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Summary. In this paper we constructed thermo-hydrodynamics for relativistic fluid (taking into 
account the second order of deviation from equilibrium for dissipative heat and viscosity flows) 
on the basis of extended irreversible thermodynamics. EIT formalism, providing adequate mod-
eling of systems close to the equilibrium state, goes beyond the local equilibrium hypothesis by 
expanding the number of basic independent variables (including dissipative flows), as well as by 
modifying such conceptual concepts as entropy, temperature and pressure. The evolutionary laws 
for the main nonequilibrium field quantities of the relativistic system are postulated: 4-vector 
particle flux, 4-vector energy-momentum and 4-vector entropy flux. In order to derive the consti-
tutive equations, a nonlocal Gibbs covariance relation and a nonlocal form of the second princi-
ple of thermodynamics with a source of entropy due to additional variables-dissipative flows-
were obtained. The defining equations of the hyperbolic type, forbidding superluminal velocities, 
modified by relaxation terms, have been obtained. The construction of relativistic thermodynam-
ics is carried out using the hydrodynamic 4-speed defined by Eckart. The constructed relativistic 
hydrodynamics has its applications in such important fields of science as nuclear physics, astro-
physics and cosmology. 

1 INTRODUCTION 
The standard formulation of the thermal and viscous fluid transport laws in irreversible ther-

modynamics (both classical and relativistic) leads to parabolic differential equations for thermal 
and viscous flows and thus to infinite velocities of thermal and viscous perturbations. Since heat 
and momentum are carried by molecules, it would be natural to expect that these waves should 
propagate at about the average molecular velocity and certainly not faster than the speed of light, 
which is completely forbidden by the consistent relativistic theory.  It has long been clear that the 
origins of this paradox lie in the well-known shortcoming of class irreversible thermodynamics 
(CIT), which belongs to the class of first-order approximation theories, which makes its applica-
tion in describing relaxation transient phenomena incorrect. 

Historically, this problem was considered first within the framework of kinetic theory and on-
ly later within the framework of phenomenological thermodynamics. The solution of the 
transport equation by the Chapman-Enskog method is based on the assumption that the mean 
free path of particles is much smaller than the characteristic macro-peak length.  Then macro-
scopic behavior of the system can be described by hydrodynamic variables, i.e. using the first 
five moments of the distribution function - particle number density, hydrodynamic velocity, en-
ergy density (or temperature). If the mean free path length is not small compared to the macro-
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scopic distances, the five hydrodynamic variables are not sufficient, and the kinetic transport 
equation should be solved using other methods. 

Grad [1] showed how transient effects can be effectively explained within the framework of 
classical kinetic theory by using the method of moments instead of the Chapman-Enskog meth-
od. According to Grad's method of moments, the nonequilibrium distribution function ( )f ,tr,v is 
expressed in terms of its molecular velocity moments (particle number density, hydrodynamic 
velocity, energy density and their spatial gradients), with the truncation procedure for the infinite 
chain of coupled momentum equations obtained being limited to second order moments, corre-
lated with heat flow, and some third order moments. The resulting equations for the thirteen 
moments allow us to obtain a closed system of generalized hydrodynamic equations, which, be-
ing hyperbolic, leads to thermal and viscous perturbations propagation velocities of the order of 
the speed of sound. Various relativistic variants of the Grad momentum method, taking into ac-
count transient effects, have been developed by Stewart [2], Israel and Stewart [3] and inde-
pendently by Malle [4] and Kranyš [5, 6]. At the same time, detailed calculations carried out 
within these theories showed that 3 / 5 c  - this is the upper limit of the velocity of the thermal 
disturbance wave front in a relativistic gas at high temperature.  

The thermodynamic approach to the analysis of relativistic fluids has also been applied re-
peatedly in the special-relativistic field (see, for example, [7-17]. However, the standard linear 
theory of relativistic thermodynamics developed by Eckart [7] and Landau and Lifshitz [9] on 
the principle of local equilibrium predicts an infinite rate of thermal and viscous signals, and, in 
addition, leads to linear defining relations characterized by general instability - in fact, in the 
presence of small perturbations, the solutions based on them diverge exponentially from the 
equilibrium state [18]. 

In classical phenomenological theory, the problem of instantaneous propagation of, for exam-
ple, thermal disturbances was solved by formally adding relaxation terms to the Fourier law. 
Thus, Cattaneo [19] proposed the following version of the Fourier law with a damper 
с / ( )τ∂ ∂ = − +∇t Tq q , which generalizes the approximate Fourier law for thermal conductivity 
to the case of accounting for long relaxation times τof heat flux or accounting for high-
frequency high-frequency (high-speed) heat transfer processes at pulses with a steep front. It is 
important to emphasize that the hyperbolic Maxwell-Cattaneo equation, incompatible with the 
assumption of a local equilibrium state, has found effective use in the simulation of many ther-
modynamic experiments with heat waves for some astrophysical processes, in particular, related 
to calculations of nuclear fusion in accretion shells of neutron stars [20,21].  

The theoretical justification for the legitimacy of using this kind of relaxation equations was 
given in [22] on nonrelativistic thermodynamics, in which the author showed that the source of 
paradoxes in phenomenological theory is related to the fact that traditional transport theory ne-
glects the second order terms in heat flux and viscosity in the entropy expression. By recon-
structing these terms, Muller [22] derived a modified system of phenomenological relaxation 
equations, which agreed with the linearized form of Grad's kinetic equations. Miller's theory was 
rediscovered and extended to relativistic fluids by Israel [16]. Since then, a number of publica-
tions on the subject have appeared (see, for example, [3, 23, 24]).  

At the same time, in recent years intensive studies have been carried out in the field of the so-
called extended irreversible thermodynamics  that goes beyond the local equilibrium hypothesis 
by expanding the number of basic independent variables when considering systems close to the 
equilibrium state and by modifying such conceptual concepts as entropy, temperature, pressure 
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and chemical potentials [25-30]. This theory introduces dissipative thermodynamic flows, which 
appear in the equations of mass, momentum and energy balance, as additional structural parame-
ters. These include, in particular: hydrodynamic velocity, stress tensor (minus its hydrostatic 
part), heat flow (total energy flow minus flows associated with advection and mechanical ener-
gy), etc.  

According to EIT theory, entropy also depends on dissipative flows, and the expression for 
the entropy flow may contain additional terms other than 1−T q . Note that the EIT theory and the 
method of thirteen moments of Grad use the same independent variables. The use of these new 
state parameters allows us to thermodynamically obtain relaxation-determining relations for a 
highly nonequilibrium system that cannot be obtained in the CIT framework, such as closure re-
lations for various dissipative transport fluxes in a turbulent fluid [31]. Thus, the EIT formalism 
is designed to describe phenomena with relatively long relaxation times and long correlation 
lengths, as well as high-frequency and short-wave phenomena [32].   

The aim of the present paper is to construct in the framework of EIT relativistic hydrodynam-
ics taking into account the second-order terms for dissipative flows. Such construction, based on 
a set of basic macroscopic quantities αN , αβT , αS , describing a no equilibrium state of the rel-
ativistic system, is connected with obtaining 14 equations, 5 of which are provided by the postu-
lated conservation laws  0α

α∂ =N  and 0αβ
α∂ =T  for 4-vector of particle flow and 4-vector of 

energy-momentum tensor, respectively, and the covariant Gibbs relation, which is the basis of 
the phenomenological approach (arising from the postulated law of increasing 0α

α∂ = σ ≥S  no 
equilibrium 4-vector entropy flux), gives exactly 9 additional equations required.  Thus, the re-
striction imposed by the local equilibrium principle on the speed of propagation of thermal and 
viscous perturbations is completely removed in EIT, since this assumption is too rough for a ra-
ther extensive class of nonequilibrium relativistic systems (for example, astrophysical high-
energy systems associated with steep gradients or fast changes).   

The extension of EIT to general relativistic systems is relatively easy if one uses the path of 
simple replacement of ordinary derivatives by covariant ones and replacement of the Minkowski 
metric by its Riemann analog to derive covariant hydrodynamic equations. However, in this 
case, there is known to be some ambiguity associated with the possible choice of the hydrody-
namic 4-speed αU . In Eckart's formulation [7] αU is a particle transfer speed, so in the accom-
panying coordinate system the value αN , disappears, while in Landau and Lifshitz [9] the speed 

αU is related to the energy flux; then in the moving system the energy flux 0iсT  disappears. In 
principle, the methodology of construction of relativistic irreversible thermodynamics should 
consider any of these fully equivalent variants.  

In this paper, in contrast to the Landau and Lifshitz [9] theory, the more convenient Eckart 
definition of the hydrodynamic speed will be used. In addition, relativistic hydromechanics and 
irreversible relativistic thermodynamics for a relaxing cosmological fluid (located in a weak 
gravitational field) are considered anew from a unified covariant point of view. In contrast to 
many publications cited above, the author, when constructing defining relations for dissipative 
flows, takes the view that these relations should be formulated by means of explicit expression 
for generalized entropy production associated with additional variables. In this approach, each 
dissipative flow (heat flow, viscous pressure, and particle flow) is defined by its own evolution 
equation (the relaxation), with the kinetic coefficients taking the form that is most natural in the 
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context of relativistic EIT [33]. 
The results presented in this synopsis are of practical interest both in nuclear physics and in 

cosmological and astrophysical situations involving the effects of thermal conduction and neutri-
no gas viscosity, as well as in studies of the collapse of stars, accretion of black holes, and the 
early Universe. 

2 INITIAL DEFINITIONS OF BASIC MACROSCOPIC QUANTITIES 
For an inhomogeneous relativistic system, the macroscopic quantities characterizing it are 

functions of space-time coordinates : : ( , ),α= =x x ct x where the index α takes 4 values: 
0,1, 2,3α = ; t  − time, c  − speed of light. Next, we will use the metric 

(1, 1, 1, 1)= diag αβ − − −g and denote the covariant differentiation operator as i) 

1
0: , : ( , )−

α α
∂ ∂ ∂ ∂ = = = ∂ ∇ ∂ ∂∂  

c
tx x

                                                  (1) 

The nonequilibrium macroscopic state of a relativistic liquid in the thermodynamic theory will 
be characterized, as well as in relativistic kinetics, by a 4-vector of particle ( )αN x , a symmetric 

4-vector of energy-momentum ( )αβT x and a 4-vector of entropy stream αS  ( , 0,1, 2,3)α β = . 

The hydrodynamic 4-velocity ( ),αU x is defined in this case as a time-like vector with a 
modulus с at each spatio-temporal point  

2( ) ( )α
α =U x U x с .                                                          (2) 

If we differentiate expression (2) by space-time coordinates, we obtain the following relation 
0α

ν α∂ =U U . With the help of the velocity ( )αU x we can determine the tensor-projector  

2( ) : ( ) ( )αβ αβ α β∆ = −x g с U x U x ,                                              (3)  

which, when convolved with an arbitrary 4-vector, acts as a projection operator, since it destroys 
the part of the 4-vector parallel to the velocity ( )αU x  

( ) ( ) 0αβ
β∆ =x U x .                                                           (4) 

The projection operator αβ∆ is  characterized by the properties:  

αβ βα∆ = ∆ ,   αβ α
βσ σ∆ ∆ = ∆ ,   3α

α∆ = .                                           (5) 

With the help of the fundamental field quantities ( )αN x , ( )αβT x , ( )αS x , and the hydrody-

namic velocity ( )αU x  we can determine macroscopic parameters of a relativistic system, such 

                                                 
i) This definition is valid only in the absence of gravity [17]. In the case of a cosmological fluid in 

the presence of substantial gravitational fields, this definition becomes significantly more complicated 
(see, e.g., [34]).  
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as particle density ( )n x , energy density ( ) :ε =x en , heat flux J ( )α
q x , pressure tensor ( ),αβP x and 

entropy density ( ) :=S x sn . At that 

(i) particle density ( )n x  is given by the covariant expression 

2( ) : /α
α=n x N U с ;                                                           (6) 

(ii) energy density ( )ε x  is defined as  

2( ) : : /ασ
α σε = =x en U T U с ,                                                  (7)  

where, ( )e x is the average energy per particle;  

(iii) heat flux ( )α
q xJ  is given by the expression   

( ) : ( )α ν σα
νσ σ= − ∆q x U T h NJ ,                                                  (8)  

where, 

( ) : /= +h x e p n        (9)  

− enthalpy (or heat function) per particle; ( )p x  − local hydrostatic pressure; from (5) follows the 
orthogonality condition  

0α
α =qUJ ;       (10) 

(iv) the symmetric pressure tensor αβP  is defined by the formula 

( ) :αβ α στ β
σ τ= ∆ ∆P x T ,                                                           (11) 

and the symmetry of the tensor αβP follows from the symmetry of the energy-momentum tensor; 
the pressure tensor is usually split into «reversible» and «irreversible» parts:  

αβ αβ αβ= − ∆ +P p П ,                                                         (12)  

where,  the value ( )αβП x is called the viscous pressure tensor;  

(v) entropy density ( )S x is defined as a scalar  

2( ) : : /α
α= =S x sn S U с ,                                                   (13)  

where, ( )s x is entropy per particle.  
Given the definitions of energy density (7), heat flux (8) and pressure tensor (12), we can 

write down the following relations:  
2/ , ,αν α αν νσ α αν αν α σλ ν

α ν ν ν σ σ λε = + ∆ = ∆ − ∆ + = ∆ ∆qU T U с h N U T p П TJ .         (14) 

Decomposition of the energy-momentum tensor. Using definition (4) for the projective oper-
ator αν∆ we can obtain the identity  

94



A.V. Kolesnichenko 
 

(0) (1)αν αν αν= +T T T ,                                               (15) 

where, (0)ανT is the «reversible» part:  
(0) 2: /αν α ν αν= ε − ∆T U U с p ;                                          (16)  

(1)ανT is the «irreversible» part: 

( ) ( )(1) 2:αν − α ασ ν ν νσ α αν
σ σ

 = + ∆ + + ∆ + q qT c h N U h N U ПJ J .          (17) 

These two forms play, as will be shown later, an important role in the derivation of macroscopic 
conservation laws. 

Hydrodynamic speed selection. The cosmological literature uses two equivalent ways of de-
termining the hydrodynamic velocity αU .  

In the approach of Landau and Lifshitz (1988) the velocity αU is defined as the energy trans-
fer rate, while in the Eckart approach the velocity αU is the particle transfer rate (for this reason 
the value iN ( 1, 2,3)=i disappears in the accompanying coordinate system). Further we will use 

Eckart's approach, in which the velocity αU is defined through a 4-vector of particle flux αN  as 
follows:  

: /α α ν
ν=U cN N N .                                                        (18) 

Taking into account normalization (2) and the definition of the projector tensor (3), definition 
(18) is equivocal to the two forms: 

2: /α α ν
ν=U c N N U ,    0αν

ν∆ =N .                                           (19) 

Substituting (19) into (8), we obtain an expression for the total heat flux in the Eckart ap-
proach:  

:α νσ α
ν σ= ∆q U TJ ,                                                             (20) 

and by substituting (19) into (17) we obtain for the energy-momentum tensor the representation 

( )(1) 2αν − α ν ν α αν= + +q qT c U U ПJ J .                                         (21 

The time derivative and the gradient. Using the hydrodynamic 4-velocity it is convenient to 
decompose the covariant derivative (1) on space-time coordinates into time-like and space-like 
parts. Using the tensor-projector (3), one can obtain the identity  

2 2 Dα − α ν αν − α α
ν ν∂ = ∂ + ∆ ∂ = +∇uс U U с U ,                                  (22) 

where the following designations are used   

D : , :ν α αν
ν ν= ∂ ∇ = ∆ ∂u U .                                                  (23) 
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The operator Du  is a convectional time derivative (in the accompanying reference frame (local 

rest) it is a purely temporal differentiation, LRD / )= ∂ ∂u t , and the gradient operator α∇ is purely 
spatial, since in this case it has the form : 

0
LR LR LR0, /∇ = ∇ = −∇ = −∂ ∂i i

i x ,   or   0α
α∇ =U .  

In addition to the concept of convectional time derivative, let us introduce additionally the 
substantive time derivative D : ,α

α= ∂N which describes the change of medium parameters when 
moving them together with the particle flow. When determining the hydrodynamic velocity 

αU according to Eckart, these two operators Du  and D  differ only by a multiplier:  

D D ν
ν= = ∂un nU .                                                              (24) 

3 BALANCE EQUATIONS OF MECHANICS AND THERMODYNAMICS 
Within relativistic kinetic theory, the balance equations are derived from the corresponding 

conservation laws that hold at the microscopic level [10, 35]. In purely macroscopic theory, these 
conservation laws are postulated. 

In a cosmological fluid, in which the number of particles is conserved, the law of conserva-
tion of the 4-vector of particle flux ( )N xα  has the form: 

( ) 0N xα
α∂ = .                                                           (25) 

The macroscopic law of conservation of energy-momentum in the case where there is no ex-
ternal field takes the form: 

( ) 0T xαν
ν∂ = ,                                                          (26) 

where the energy-momentum tensor , defined by formulae (16) and (21), is given by the formula 

( )2 2: / q qT U U с p c U U Пαν α ν αν − α ν ν α αν= ε − ∆ + + +J J                             (27) 

At 0α =  this is the law of conservation of energy and at 1, 2,3α =  this is the law of conservation 
of momentum of the system. 

Continuity equations. The total numerical density ( )n x  is given by the covariant expression 

(6). Hence, and from the rate normalization (2), it follows that :nU Nα α= . Using the conserva-
tion law (25) and the time convection derivative operator we obtain the continuity equation for 
the density ( )n x   

D ( )u n U n nU n U N n U n Uα α α α α α
α α α α α α = ∂ = ∂ − ∂ = ∂ − ∂ = − ∂  , 

which taking into account identity (22) and auxiliary relation (2), can also be written in the form: 
2D Du un n U n U nc U Uα α − α

α α α= − ∂ = − ∇ + =  
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( )2n U nc U U U n Uα − σ α α
α α σ α

− ∇ + ∂ = − ∇
,                                           (28) 

or 
1Dun n U− α

α= ∇ .                                                        (28*) 

Relativistic equation of motion. The equation of motion is derived from the conservation law 
of the 4-tensor of energy-momentum by convolving it with the projective operator ασ∆ (3): 

( ) 0T xα σν
σ ν∆ ∂ = .                                                         (29) 

Substituting expressions (27) for the energy-momentum tensor T σν  into this equation, we obtain 
the relativistic equation of motion in another form:  

2 1D ( )uс hn U p П hn П p− α α α νσ − αν
ν σ ν= ∇ −∆ ∇ + ∇ −  

( )2 D ,u q q qс U U− α ν α ν ν α
ν ν ν− ∆ + ∇ + ∇J J J     (30) 

in which, as before, ( )h x is enthalpy per one particle. From this equation one can see that accel-
eration of relativistic medium is caused by pressure gradients and, besides, by a number of terms 
of purely relativistic origin. If we neglect the fluxes Пαν  and q

αJ , associated with the dissipative 
transport phenomena, the equation of motion is reduced to the zero-order equation 

2 1D ( )u U с nh pα − α= ∇ ,                                                (31) 

which corresponds to the Euler equation for the ideal gas in classical hydromechanics. The ex-
pression (31) linking acceleration and pressure gradient plays an important role in deriving rela-
tivistic defining relations in those when only relations linear in fluxes associated with transport 
phenomena are considered. 

Relativistic energy equation. The balance equation for specific energy ( )x enε = of the system 
is derived using the energy-momentum conservation law (26) with consideration of relations (2), 
(4), (10), (11), and also definitions (23) for the operator D :u U ν

ν= ∂ and (27) for the 4-tensor 

Tαν energy-momentum; as a result, we will have: 
2D Du q q uhn U П U c Uα αν α − α

α ν α α αε = − ∂ + ∂ − ∂ +J J .                        (32) 

Let us also give an equation for the rate of change of energy ( )e x per particle, to derive which 
we subtract from equation (32) the continuity equation (28) multiplied by ( )e x ; as a result we 
obtain 

2D D 2 Du q q ue n e p U П U c Uα αν α − α
α ν α α α≡ = − ∇ + ∇ −∇ +J J .                    (33) 

If we neglect the dissipative fluxes αβП  and α
qJ , then the two equations for energy (32) and 

(33) will be written in the form of relativistic Euler equations (zero-order equations for energy): 
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Du hn U α
αε = − ∂ ,                                                           (34) 

De p U α
α= − ∂ .                                                             (35) 

The first law of thermodynamics. The first law of thermodynamics is usually an equation that 
relates quantities D D (1/ )u ue p n+  to other local quantities. From the continuity equation (28) it 

follows that 1Dun n U−
α α= ∇ .  

Combining this expression with (33), we arrive at the equation  

( )1 2D D 2 D− αν α − α
ν α α α+ = ∇ −∇ +u u q q un e p n П U c UJ J ,                        (36) 

which can be called the first law of relativistic thermodynamics. From equation (36) we see that  
change energy ( )e x occurs due to two terms describing the work, namely the second term in the 
left part depending on the local hydrostatic pressure ( )p x , and the first term in the right part de-

pending on the viscous pressure tensor Пαβ , and in addition, due to two thermal terms: diver-
gence of the heat flow q

αJ  and a purely relativistic term containing, due to relation (31), the pres-
sure gradient 

1 1D D 2 ( )q qe p n П U hn p− αν α α − α
ν α α+ = ∇ −∇ + ∇J J .                     (37) 

In the absence of values associated with dissipative fluxes by transport processes, this law 
takes a simple form  

D D (1/ ) 0u ue p n+ = ,                                                   (38) 

corresponding to the first law of thermodynamics for systems adiabatically isolated from the en-
vironment.  

The given equations of relativistic hydrodynamics are open because the transfer flux-
es , qПαβ αJ  entering them still remain undefined. Let us first show how these fluxes can be relat-
ed linearly with gradients of macro-peak variables by methods of relativistic irreversible thermo-
dynamics.  

4 ENTROPY LAW AND ENTROPY BALANCE IN RELATIVISTIC  
IRREVERSIBLE THERMODYNAMICS. 

The content of the concept «second law of thermodynamics» can mean one of the following 
two statements, or encompass both of them:  

(i) Gibbs ratio. This law states how changes in entropy in space and time are related to 
changes in the thermodynamic variables that determine the state of the system in equilibrium. A 
generalization of the Gibbs relation to the relativistic domain was made in [10], in which it was 
shown that the traditional form of this relation remains valid in the first approximation to the 
transfer fluxes for a relativistic system in the equilibrium state.  

(ii) The law of entropy balance. This equation expresses the fact that the local entropy of a 
relativistic system can vary both because of the entropy flux s

αJ and because of the entropy pro-
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duction per unit volume per unit time (entropy source intensity) , which, being a non-negative 
quantity, is expressed through independent fluxes and associated thermodynamic forces, directly 
related to the measured physical quantities 

Formal entropy balance equation. In Section 2, formula (13) determined the entropy densi-
ty :S sn=  through flux ( )S xα :  

2: : /S sn S U сα
α= = , 

where s is entropy per particle. Now we obtain a formal expression for the entropy balance using 
the identity  

D ( )un s sNα
α≡ ∂ ,                                                    (39) 

which is a consequence of the law of conservation (28) of the number of particles ( )n x and defi-
nition (23) of the convection time derivative operator Du . Adding and subtracting the same term, 
we write equality (39) as 

D ( )un s S sN Sα α α
α α= −∂ − + ∂ ,                                          (40) 

which can be interpreted as a balance equation for the entropy per particle. Indeed, it can be re-
written as: 

Du sn s α
α= −∂ +σJ ,      (41) 

where  

( ) : ( ) ( ) ( )s x S x s x N xα α α= −J ,   0 : Sα
α≤ σ = ∂                                  (42) 

− respectively entropy flux (by definition) and entropy source intensity − a quantity which is the 
postulated law of increasing entropy. 

Relativistic Gibbs ratio. It is known from CIT that the entropy density is a well-defined func-
tion of state parameters necessary for a complete description of a macroscopic equilibrium sys-
tem (see, for example, [22]. For the considered relativistic liquid such parameters are energy per 
one particle ( )e x and specific volume 1( )n x − per one particle. This property for relativistic sys-
tems (as well as for classical ones) is expressed by the fact that for systems in equilibrium the so-
called Euler relation takes place (see, for example, [10, 16]) 

1Ts e pn−= + −µ ,                                                       (43) 

where T is the temperature of the system at equilibrium; p −local hydrostatic pressure, µ−the 
Gibbs function (thermodynamic potential) per particle. 

If we now take the covariant derivative ν∂ of (43), we obtain the expression  

1 1T s e p n n p s T− −
ν ν ν ν ν ν∂ = ∂ + ∂ + ∂ − ∂ − ∂ µ ,     ( 0,1, 2,3ν = ).                   (44) 

Since the last three terms in this expression are zero ( 1( 0n p s T−
ν ν ν∂ − ∂ −∂ µ = − a relativistic ver-

sion of the Gibbs-Duhem relation), the relativistic Gibbs relation valid for local equilibrium con-
ditions follows from (44): 
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1T s e p n−ν ν ν∂ = ∂ + ∂ ,     ( 0,1, 2,3ν = ).                                      (45) 

This relation relates the change (with respect to time t and spatial coordinates x ) of entropy 
( )s x per particle to the changes of energy ( , )e tx , density ( , )n tx .  Other physical quantities are 

absolute temperature ( , )T tx and local hydrostatic pressure ( , )p tx , determined by derivatives:   

1
1/( / ) nT s e− = ∂ ∂ ,    1 1( / )eT p s n− −= ∂ ∂ . 

The Gibbs relation (45), using the convection time derivative operator D : Dun= , can also be 
written in the form [10, 16] 

1D D DT s e p n−= + .                                                   (46) 

Entropy balance based on Gibbs ratio and conservation laws.To find the explicit form of the 
entropy balance equation (41), combine ratio (46) and equation (37); the result is: 

1D ( )u q qTn s П U hn pαν α α − α
ν α α= ∂ −∇ + ∇J J .                          (47 

 

This equation, written in the form of the balance equation (41), takes the form: 

1D q
u q

T pn s П U
T T T hn

α
αν α α α

α ν α

   ∇ ∇   = − ∇ + ∇ − −       

J
J .           (48) 

Comparing (41) with equation (48), the expressions for entropy flux and entropy production: 
1: qs T

α α=J J ,    1: 0q
T pП U

T T hn
αν α α α

ν α
 ∇ ∇  σ = ∇ − − ≥  

  
J .           (49) 

5 LINEAR DEFINING RELATIONS IN RELATIVISTIC IRREVERSIBLE  
THERMODYNAMICS 

Entropy production. For the convenience of further operations, let us decompose the viscous 
pressure tensor  :П T pαν α στ ν αν

σ τ= ∆ ∆ + ∆ as follows: 

:П П Пαν αν αν= − ∆ +


.                                                  (50) 

Here 2( ) : ( ) ( )x g с U x U xαβ αβ α β∆ = −  is the tensor-projector, which has a number of properties 

used below (5); Пαν


 is the viscous pressure tensor with a zero trace; 
1
3:П Пαν

αν= − ∆                                                        (51) 

−  the viscous pressure, defined as taken with the sign minus one third of the trace of the viscous 
pressure tensor, 1

3:П Пα
α= − . The latter definition follows from the relation 

П П g Пαν αν α
να να α∆ = = ,      (52) 
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where the first equality is a consequence of : (i) the definition of the tensor-projector (5); (ii) the 
definition (12) for the pressure tensor Pαβ and the definition 

:П P pαβ αβ αβ= + ∆ ;                                                (53) 

for the viscous pressure tensor; (iii) the orthogonality relations, 0Uαβ
β∆ = .  

Using the auxiliary formulas listed above, as well as formulas (5) and (50), it is easy to show 
that the equality 

0П П g Пαα αν αν
να να= = ∇ =

  

,                                     (54) 

i.e., that the tensor Пαν


really has a zero trace. 
If we now substitute the expansion (50) into the relation (49) for entropy production through 

viscous processes, we obtain 

1T П U П Uν αν
ν ν ασ = − ∇ + ∇



.                                       (55) 

From (55) we see that the total contribution of viscous phenomena to the production of relativ-
istic entropy turns out to be divided into two parts. Of these, the first contribution is due to the 
presence of viscous pressure (the second is viscosity) As for the second term in the expansion 

(50), from the fact that the viscosity tensor Пαν


is symmetric and spatially similar, we can con-
clude that in the covariant derivative Uν α∂ in this product only its symmetric, spatially similar 
and traceless part is essential: this quantity will be further denoted by the curve bar with a zero 
sign over it. Thus, instead of (55) we can write  

1T П U П Uν α ν
ν νασ = − ∇ + ∇





 ,                                            (56) 

where  

( )1 1
2 3U Uα ν α ν ν α αν σ τ

σ τ σ τ στ
 ∇ = ∆ ∆ + ∆ ∆ − ∆ ∆ ∇ 



 .                         (57) 

Finally, substituting (56) into (49), we obtain the final expression for total entropy production 

ln B
q

k TT П U П U T p
h

ν να α α
ν ν α α

 σ = − ∇ + ∇ − ∇ − ∇ 
 

J


 .               (58) 

Let us now rewrite expression (58), which is the sum of products of irreversible flows and as-
sociated thermodynamic forces of different tensor orders, in the following form: 

U q qT ПX X П Xα αν
ναασ = + +J





,                                   (59) 

where 
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:UX Uα α= −∇        (60) 

− thermodynamic force (4-divergence of hydrodynamic velocity) coupled to the flow due to vis-
cous pressure П ; 

:X Uαν ν α= ∇




        (61) 

− thermodynamic force (shear tensor) conjugate to the tensor Пαν


; 

: ln lnB
q

k TT pX T p
T hn h

α α
α α

α
 ∇ ∇

= − − = −∇ + ∇  
 

,   ( 0,1, 2,3α = )             (62) 

− the thermodynamic force associated with the heat flow q
αJ , including the temperature gradient 

and the so-called Eckardt term proportional to the pressure gradient (a purely relativistic effect 
due to the dependence of enthalpy 2 5

2 ...Bh mc k T= + + on rest energy 2)mc . 
Linear defining relations. We use expression (59) to obtain phenomenological defining rela-

tions linearly linking independent flows and thermodynamic forces. In principle, each flux com-
ponent in this case can be a function of the components of all thermodynamic forces. However, 
flows and thermodynamic forces in (59), as it is easy to see, have different tensor properties: 
they are 4-scalars, 4-vectors and 4-tensors. This means that the transformational properties of the 
above objects, determined under ordinary spatial rotations by their behavior with respect to infin-
itesimal Lorentz transformations, are different [17]. As a result, it may turn out that, due to the 
symmetry properties  of the considered medium, individual components of some flux will not 
depend on all components of thermodynamic forces (the relativistic Curie symmetry principle). 
In particular, for an isotropic medium, flows and thermodynamic forces of different tensor di-
mension do not depend on each other [33].  

In accordance with the general concept of construction of phenomenological defining rela-
tions in irreversible thermodynamics, relativistic defining relations for isotropic medium, related 
to the contribution of viscosity to the entropy production, take the form: 

U U UП X Uα α= η = −η ∇ ,                                                          (63) 

2 2П X Uαν α ν
αν= η = η∇







                                                          (64) 

− tensor law for viscous flow. Here 1( , )U T n−η , 1( , )T n−η are, respectively, the scalar coefficient 
of bulk viscosity and the scalar coefficient of shear viscosity.  

The linear relation for the heat flux q
αJ , takes the form: 

ln lnB
q qq q qq

k Tl X l T p
h

α α α α = = − ∇ − ∇ = 
 

J  
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TT p
hn

α α = −λ ∇ − ∇ 
 

,     ( 0,1, 2,3α = ),     (65) 

where 1( , ) /qqT n l T−λ = is the thermal conductivity coefficient. 
The results of relativistic kinetic theory [13, 24] can be used as kinetic transfer coefficients. In 

particular, in [35] analytical and numerical results were obtained for the first three approxima-
tions to the transfer coefficients of a gas consisting of massive particles with a constant differen-
tial section; the full temperature behavior of these coefficients for both a weakly relativistic and 
an ultrarelativistic ideal gas was also studied. 

Relativistic hydrodynamics in a class of first-order theories. Using the phenomenological 
linear laws (63)-(65) and the equations of state  

Bp nk T= ,       (66) 

2 3
2 ...Be mc k T= + +       (67) 

it is possible to transform the balance equations for particle number density ( )n x , hydrodynamic 

velocity ( )U xα and energy ( )e x per particle into a system of partial differential equations for the 

variables n , U α , and T . 
However, if we simply substitute the linear laws (64) and (65) in the balance equations, we 

will get a cumbersome result that apparently has no practical value. Therefore, it is usually as-
sumed that gradients of field quantities can be considered small, which allows linearizing the 
balance equations by these gradients, i.e., neglecting the terms containing products of fluxes and 
gradients. In this case, the transfer coefficients can be assumed constant. 

The continuity equation (28), which does not contain any irreversible quantities, retains its 
form 

D .u n n U ν
ν= − ∇        (68) 

The relativistic equation of motion (30) after substitution of expression (64) and linearization 
by gradients takes the form:  

2 2D 2 Du U u qс hn U p U U с− α α σ α ν − α
σ ν= ∇ −η ∇ − η∇ ∇ − J



 .                (69) 

The equation for energy (33), which by virtue of equations of state (66) and (67) and the line-
ar relationship (65) for heat flux after linearization by gradients, takes the form :  

2 2Dv u
Tnc T p U T p
hn

α
α

 = − ∇ + λ ∇ − ∇ 
 

.                            (70) 

Here 2 : α
α∇ = ∇ ∇ ; : /vc e T= ∂ ∂  is the heat capacity per one particle. Using the ratio of heat ca-

pacities per one particle 25 5
3 31 / / ...B v Bk c k T mcγ = + = − + , the energy equation (70) can be re-

written as follows: 
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2 2D (1 )u T TU T p
T p hn

α
α

 λ  = − γ ∇ + ∇ − ∇    
.                            (71) 

Express now the last term of the equation of motion (71) through the structural parameters n , 
U α , and T . Using equations (66), (68), and (71), it is easy to obtain the relation 
Du p p U α

α= γ ∇ , with which the desired representation for the time derivative of the heat 

flux q
αJ  has the form: 

2 Du qс U− α α ν
ν= ξ∇ ∇J ,  where   [ ]2: (1 ) B

T h k T
c h
λ

ξ = − γ + γ .                 (72) 

Thus, equations (68), (69), (71) and (72) form a self-consistent system of partial differential 
equations that completely describe the time evolution of a relativistic fluid provided that the cor-
responding initial and boundary conditions are specified. These equations are a relativistic gen-
eralization of the Navier-Stokes equations of classical fluid dynamics for ideal media. They dif-
fer from these equations in the presence of terms that are proportional to transfer coefficients and 
that describe dissipative effects in the relativistic system.  

In conclusion of this section we note the following: The system of dissipative equations of 
relativistic hydrodynamics obtained here has two drawbacks. Firstly, this first-order hydrody-
namics predicts the existence of infinite velocity of thermal and viscous disturbances, which, 
generally speaking, is unacceptable from the point of view of the relativistic theory. Second, the 
transfer equations obtained using phenomenological linear laws are characterized by a general 
instability: in fact, in the presence of small perturbations, their solutions diverge exponentially 
from the equilibrium state [18]. 

These drawbacks can be avoided by using the methodology of extended irreversible thermo-
dynamics in the design of relativistic fluid dynamics. Note that ensuring the finiteness of the 
thermal and viscous propagation rate was, precisely, one of the motivations for the emergence 
and development of the RST theory (see [25-30]).  

6 SECOND-ORDER CLOSURE EVOLUTIONARY MODELS DERIVED FROM  
RELATIVISTIC EXTENDED IRREVERSIBLE THERMODYNAMICS 

Let us now proceed to the main goal of this paper − the derivation of the defining relations 
describing relaxation of relativistic dissipative flows within the EIT formalism [26, 27, 36]. Let 
us note at once that the EIT (which is valid outside the local equilibrium approximation) does not 
generally provide any general criterion for finding them, except only for the restrictions that the 
second law of thermodynamics imposes on these equations. For this reason, the equations of 
evolution cannot take an arbitrary form, since they must satisfy the second law 0σ ≥  (hence, the 
linear relationship between the flows and the associated thermodynamic forces).  

The natural way to obtain differential equations for relaxation dissipative flows describing 
nonequilibrium but stable states of the relativistic medium is to modify the linear laws obtained 
in Section 4 in the framework of the CIT. 

Generalized Gibbs ratio. Just as in CIT, entropy and the Gibbs identity play a central role in 
relativistic extended irreversible thermodynamics. In the context of the EIT formalism we will 
postulate that there exists a generalized no equilibrium entropy  
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1( , , , , )qs s e n П П− α αν= J


,                                              (73) 

depending not only on the classical variables - energy ( )e x and specific volume 1( )n x − , but also 

on and fluxes ( )П x , ( )q xαJ and ( )П xαν


, appearing in the equations of the balance of the num-
ber of particles, momentum and energy. Then the differential form of the generalized entropy 
takes the form of: 

1 1

1
1

, , , , , , , , ,

D D D D
q q

u u u u q
n П П e П П q e n П П

s s ss П e n
e n− α αν α αν

− αν

αν − α
− α

 ∂ ∂ ∂    = + + +     ∂  ∂ ∂   J J
J

J








 

1
1, , ,

, , ,

D D .
q

q

u u
e n П

e n П

s sП П
П

П
− α αν

− α

αν

αν

 
∂ ∂   + +   ∂   ∂ J

J







                     (74) 

By analogy with the classical theory of irreversible processes, we define the nonequilibrium 
absolute temperature ii) ( )xθ  and the no equilibrium thermodynamic pressure ( )π x by the equa-
tions: 

( ) 1
1 1

, , ,( , , , , ) : /
qq n П Пe n П П s e − α αν

− − α ανθ = ∂ ∂ JJ 



,                       (75) 

( )1 1 1
, , ,

( , , , , ) : /
q

q e П П
e n П П s n α αν

− − α αν −θ π = ∂ ∂
J

J 



.                  (76) 

The remaining partial derivatives in (74) will be assumed to be linear in fluxes. Let us introduce 
notations: 

( ) 1
1 1

00, , ,/ :
qe n Пs П T n П− α αν

− −∂ ∂ = − αJ
 ,     (77) 

( ) 1
1 1

10, , ,
/ :q qe n П П

s T n− αν
α − − α∂ ∂ = − αJ J ,     (78) 

1 1 1
21, , ,( / ) :

qe n Пs П T n П− α
αν − − αν∂ ∂ = − αJ

 

.     (79) 

Here the coefficients 00α , 10α  and 21α are unknown scalar functions of the parameters 

( )e x and 1( )n x − . Substituting expressions (77)-(79) into (74), leads to a generalized Gibbs rela-
tion for a nonequilibrium relativistic system 

                                                 
ii) Note that temperature θ  is not a measure of the average energy of the translational degrees of freedom of 

particles in a relativistic fluid medium.  
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1 1 1D D Du u un s n e n n− − −= θ + θ π −  

1 1 1
00 10 21(D ) (D ) (D )u q u q uT П П T T П П− − α α − αν αν− α − α − αJ J

 

. (80) 

The evolution of entropy is determined by the law of balance (41), and now it is necessary to 
find the corresponding expressions for the entropy flux ( )s xαJ  and entropy production ( )xσ in
this nonequilibrium case. To do this, we substitute in (80) the expressions for Dun е  and 

1Dun n− from the energy and mass balance laws (33). (28). Immediate calculations allow us to
obtain the equality: 

1D 2u q q
pn s П U П U

T hn

α
α α α ν α ν

ανν

 ∇ = −∇ + − ∇ + ∇ −
 
 

J J




  

00 10 21(D ) (D ) (D )u q u q uП П П Пα α αν
αν−α −α −αJ J





. (81) 

In obtaining this result, we used the pressure tensor expansion ( )P П Пαν αν αν= − π+ ∆ +


, which 
is a well-known expansion in classical relativistic hydrodynamics, in which ( )p x  the nonequilib-
rium pressure ( )xπ  is replaced with. The further replacement of ( )xπ  and ( )xθ  by ( )p x  and 

( )T x in relation (81) is explained by the fact that the second-order contributions in the flows are 
negligible. 

Generalized entropy flux and entropy production. Before proceeding to finding a generalized 
expression for entropy production, defined by equality (41) 

D 0u sn s α
ασ = + ∂ ≥J , (82) 

we need to determine the corresponding expression for the entropy flux .s
αJ  For isotropic relativ-

istic systems, the most general such representation in terms of the basis independent variables e , 

1n− ,П , q
αJ  and Пαν



 and taking into account terms at least of the second order, is the following 
equality:  

1: q q qs П Пα − α α αν
ν′′ ′′′= θ +β +βJ J J J



, (83) 

where the coefficients ′′β and ′′′β represent in general the functions ( )e x  and 1( )n x− . Here, in 
order to show the connection with the thermal conductivity problem, the inverse nonequilibrium 
temperature 1( )x −θ  is chosen as the coefficient in the heat fluxes ( )q xαJ .

The expression for entropy production can be easily obtained from (82) by replacing 
Dun s and s

αJ  with the corresponding expressions (81) and (83). As a result, we obtain 
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00
1 20 (D )

α
α α α αν

α α α ν

 ∇ ≤ σ = −∇ + − ∇ + ∇ −α −
 
 





q q u
p П U П U П П

T hn
J J  

1
10 21(D ) (D )α αν − α α αν

ανα α ν

  ′′ ′′′−α −α + ∂ θ +β +β 
  

 



q u q u q q qП П П ПJ J J J J . (84) 

This expression has a bilinear form  

U q qПX X П Xα αν
ανασ = + +J





,     (85) 

where the following thermodynamic forces, coupled with dissipative flows П , q
αJ and Пαν



: 

00
1: (D )α α

α α′′= − ∇ −α +β ∇U u qX U П
T

J ,     (86) 

10
1 ln (D )

α
α α α αν

α ν
 ∇ ′′ ′′′= −∇ + −α +β ∇ +β ∇  
 



q u q
pX T П П

T hn
J ,  (87) 

21
1 (D )u qX U П
T

α ν αν α ν
αν ′′′= ∇ −α +β ∇ J

 





  .     (88) 

In writing the relations (86)-(88) the identity transformations were used: 
1 1 2 1( ) ( ) D ( )q q u qc U− α − α − − α

α α α∂ θ = ∇ θ + θ =J J J  

1 2 1 1
2

1( ) Dq q u q q q
T pc U T

T hnT

α
− α − − α α − α α αα

α α
∇ ∇

= ∇ θ − θ ≅ ∇ − −J J J J J ,  (89) 

( )2( ) Dq q q q uП П П c П Uα α α − α α
α α α′′ ′′ ′′ ′′∂ β = β ∇ +β ∇ −βJ J J J ,    (90) 

( )2( ) Dq q q q uП П П c П Uαν αν αν − αν α
α ν ν α α ν ν′′′ ′′′ ′′′ ′′′∂ β = β ∇ +β ∇ −βJ J J J

   

, (91) 

in obtaining which are used: 
(i) formula (22) for 2 Duс Uα − α α∂ = +∇ ;  

(ii) instead of the time derivative Du U α , the zero-order equation of motion (31), valid for 

an ideal fluid, 2 1D ( )uc U hn p− α − α= ∇ ; 

(iii)  orthogonality conditions (10), 0qUα α =J , 0П Uαν
ν = ;  

(iv)  the neglect of the last terms in relations (90) and (91), since they lead to a higher ap-
proximation order (higher than the second one).  

Relaxation equations. According to the general concept of construction of defining relations 

107



A.V. Kolesnichenko 
 

in irreversible thermodynamics, the relativistic evolution equations for flows ,q ПαJ and Пαν


in 

an isotropic relativistic medium can be chosen proportional to , respectively, qX α , UX and 

X αν


with positive proportionality coefficients and so as to ensure that the value of entropy pro-
duction σ is positive. As a consequence, the equations of evolution of fluxes have the form: 

a) The phenomenological linear equation for viscous pressure. This equation has the form: 

( )00
1 ˆˆ Dν α

ν α
 

′′= η = −η ∇ + −β ∇ 
 

U U U u q
B

П T X U a П
Tnk

J .                   (92) 

 

Here Uη  is the bulk viscosity coefficient, for which the relativistic kinetic theory for an ideal gas 
gives the following expression in the first approximation of the Ritz variational method  [37-40].  

2

22

ˆ[(5 3 ) 3 ]
( )

B
U

k T h
с T A

− γ − γ
η =

σ
,                                            (93) 

where ( )Tσ - effective differential cross-section; ˆ / Bh h k T= - reduced enthalpy; 2: / Bz mc k T= ; 
: / 1 /p v B vс c k cγ = = +  - ratio of heat capacities. In the same approximation for the coefficients 

00 00â a Tp=  and ˆ Tp′′ ′′β = β , in the case of ideal gas Bp k nT= , we have: 
i)  in the nonrelativistic ideal gas limit, when z →∞ : 

2
00ˆ 6 / 5zα = ,   ˆ 4 / 5z′′β = ,                                            (94) 

ii)  in the ultrarelativistic ideal gas limit, when 0z → :  

00ˆ 216 / zα = ,   2ˆ 6 / z′′β = .                                           (95) 

b) Linear evolution equation for heat flow. This equation has the form: 

2
10

1 ˆ ˆˆ (D )q q u q
B

T pT X T П П
T hn nk T

α α
α α α αν

α ν

  ∇ ∇ ′′ ′′′  = λ = λ − + − α −β ∇ −β ∇
    

J J


,    (96) 

where 

( )2 11
3 1/ ( 1)

( )
Bck

T B
λ = γ γ −

σ
                                                (97) 

− is the heat transfer coefficient obtained in the first approximation of the Ritz variational meth-
od (Anderson, 1975); for the coefficients of  ˆ Tp′′ ′′β = β , ˆ Tp′′′ ′′′β = β  and  10 10ˆ pTα = α we have: 

i) in the nonrelativistic ideal gas limit, when  z →∞ : 

 2
10

ˆ ˆˆ4 / 5, 2 / 5 , 2 / 5z z c′′ ′′′β = α = β = ;                              (98) 

ii) in the ultra-relativistic ideal gas limit, when 0z → : 
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2 2
10

ˆ ˆˆ6 / , 5 / 4 , 1/ 4z c′′ ′′′β = α = β = .                                 (99) 

c) Equation for pressure in the presence of shear viscosity. Relativistic extended irreversible 
thermodynamics leads to the following result: 

21
1 ˆˆ2 2 (D ) ,u q
B

П T X U П
nk T

αν α ν αν α ν
αν

  
  ′′′= η = η ∇ − α −β ∇
  
   

J
 

 



            (100) 

where 

00

ˆ10
( )
Bk T h

c T C
η =

σ
                                                       (101) 

− shear viscosity coefficient in the first approximation of the Ritz variational method [37]; the 
coefficients 2

21 21ˆ Bnk Tα = α and  2ˆ
Bnk T′′′ ′′′β = β tend to values: 

 i)  in the nonrelativistic limit to  

21ˆ 1/ 2α = ,    ˆ 2 / 5′′′β = ;                                          (102) 

ii) in the ultrarelativistic limit to the values of 

21ˆ 3 / 4α = ,   ˆ 1/ 2′′′β = .                                             (103) 

Here the matrix elements 22A , 11B and 00C are bracket expressions, which are calculated taking 
into account the type of interaction of the particles.  

If the linear laws (92), (96) and (100) are used to exclude thermodynamic forces from (85), 
the entropy gain can be represented as  

21 1 1 0
2q q

U
T П П П

T
α α αν ανσ = + + ≥

η λ η
J J

 

.                       (104) 

Thus, the generalized linear laws are compatible with non-negative entropy growth. The found 
expression for the entropy increment agrees with the traditional thermodynamics of irreversible 
processes. 

Second-order relativistic hydrodynamics. The three equations (92), (96), and (100) for vis-
cous pressure, heat flow, and pressure in the presence of shear viscosity obtained within the 
framework of extended irreversible thermodynamics are generalizations of linear laws (63)-(65) 
derived by CST methods. Here they are derived by choosing the Eckart hydrodynamic velocity.  
These relations partially coincide with similar formulas derived by de Groot et al. [10], Stewart 
[2] and Israel and Stewart [3] in their thermodynamic theory. The most striking property of gen-
eralized linear laws is the appearance of time derivatives of fluxes. Thus, they take into account 
the relaxation effect with a typical time scale of the order of the mean free time. 

The system of hydrodynamic equations (28), (30) and (33) linearized by gradients of structur-
al parameters and linear constitutive equations for dissipative flows, rewritten as relaxation equa-
tions, has the form:  
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Du n n U α
α= − ∇ ,                                                               (105) 

2 2D Du u qс hn U p П П с− α α αν αν − α
ν

 
 = ∇ +∇ ∆ − −
 
 

J


,                                (106) 

D ( )u qn e p П U П Uα α αν
α α ν α= −∇ − + ∇ + ∇J



 ,                                        (107) 

0
ˆD U

u U q
B

П П U
Tnk

ν α
ν α

η ′′τ = − −η ∇ + β ∇ J ,                                       (108) 

1
2

ˆ(D ) 2 2 ,u qП П U pαν αν α ν − α ν′′′τ = − + η∇ + η β ∇ J
 

 

                                 (109) 

1
1 ˆ ˆ(D )u q q
B

T pT П П
T hn nk T

α α
α α α αν

ν

  ∇ ∇ ′′ ′′′  τ = − + λ − + + β ∇ +β ∇
    

J J


.        (110)  

These five conservation laws (105)-(107) , as well as the nine relaxation equations (108)-

(110) represent a system of 14 equations with 14 unknown variables , , , , qn e U П α
α J and Пαν



, in 

which the values 0 00ˆ: /U Ba nk Tτ = η , 1 10ˆ: / Bnkτ = λα  and 2 21ˆ: 2 / Bnk Tτ = ηα  being the relaxa-
tion times of the viscous pressure, heat flow, and pressure respectively in the presence of shear 
viscosity, account for the relaxation effect with the typical time scale of the mean free time be-
tween collisions. From relations (107)-(109) it is clear that deviations from the linear law take 
place when the relaxation times of the system overlap the macroscopic time scale. For nonsta-
tionary flows, these equations are of the hyperbolic type, while similar hydrodynamic equations 
obtained by the CST method are parabolic. Similarly, stationary equations (104)-(109) have el-
liptic (at low velocities) and hyperbolic (at high velocities) types depending on the flow velocity, 
while stationary equations (68)-(71) are always of elliptic type. The results of a study of the 
properties of wave phenomena in these relativistic hyperbolic heat-conducting and viscous fluids 
are presented in [41]. 

7. CONCLUSION 
The paper presents a modern formulation of relativistic extended irreversible thermodynamics 

for dissipative fluid medium taking into account the second-order terms for dissipative flows. 
Relativistic thermodynamics is presented here as field theory. The field equations are based on 
the postulated conservation laws of such fundamental macroscopic quantities as 4-vector particle 
flux Nα , 4-vector energy-momentum Tαβ and 4-vector entropy flux Sα . The linear defining 
relations for dissipative flows of heat conduction and viscosity are derived from an explicit en-
tropy balance equation based on the postulated relativistic Gibbs relation for both equilibrium 
and nonequilibrium states.  

It is shown that the theory based on the relativistic Gibbs relation for equilibrium systems 
contains a fundamental drawback, which leads to parabolic differential equations and, conse-
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quently, to infinite propagation velocities for heat flow and viscosity, which contradicts the prin-
ciple of causality. 

Thus, this approach is not effective for many phenomena in high energy astrophysics related 
to steep gradients or rapid changes of structural parameters.  It is valid only when using terms up 
to the first order for deviations from equilibrium; however, in order to find effective phenomeno-
logical defining relations based on an explicit expression for entropy production, the second or-
der is already required. For this reason, the goal of this paper is to attempt to eliminate these 
drawbacks by systematically conserving second-order terms on fluxes in the 4-vector of entropy 
flux and obtaining on its basis the defining relaxation equations. This has led to the necessity of 
using the methods of the so-called extended irreversible thermodynamics which, going beyond 
the local equilibrium hypothesis, uses dissipative flows of corresponding physical quantities as 
additional independent structural parameters. 

The relativistic thermo-hydrodynamics constructed in the class of theories of the second order 
has not only purely conceptual meaning: this theory has its applications in such important fields 
of knowledge as nuclear physics, astrophysics and cosmology. In particular, in viscous cosmo-
logical models the volumetric viscosity acts as a cause of dissipation, which has a significant im-
pact on the processes in the Universe.  
Acknowledgements:This work was performed within the framework of the State Assignment of 
the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences. 
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