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Summary. Beam-like structures are widespread but essential systems that have been 

extensively studied for centuries. Although several proposed solutions are effective, the time 

consumption and the difficulty of reconstructing the problem are the major disadvantages of 

these methods. This paper offers a new methodology for finding solutions to beam problems 

based on Machine Learning and Neural Networks with different optimization algorithms. 

Various regression models are compared on numerically stimulated Euler-Bernoulli beam 

modelling.  
 

1 INTRODUCTION   

Beams are structural components that are essential in several structural systems. They have 

been extensively investigated for more than a century (see [1-4] and the references therein). 

The calculation of deflection is crucial because of its importance in operation serviceability. 

Hence, several numerical approximation algorithms have been found to find solutions to such 

problems. One of the most prominent and efficient methodologies for finding solutions to 

differential equations and mathematical models is the Finite Element Method (FEM). By 

discretizing the domain, defining finite elements (FEs), and generating the mesh, the 

deflections of the beam are calculated. When the problem size becomes large, time needed to 

solve the resulting systems may range from hours to days, and if the input parameters need to 

be adjusted, even slightly, the simulations have to be re-done from scratch. Recent advances 

in machine learning algorithms and their successful applications in various fields demonstrate 

that, if properly chosen and trained, these models can significantly improve conventional 

techniques.  
Although many methodologies have been introduced for better convergence, time is vital 

in solving beam problems. For this reason, researchers have been investigating the 

implementation of Machine Learning (ML) and Neural Networks (NNs) models in such 

problems for the last several years. The possibility of predicting the bending moment of 

Euler–Bernoulli beam and drilling rise with Linear Regression (LR) and Recurrent Neural 

Networks was investigated in [5]. The methodology for finding the approximations using 

NNs with a new optimization algorithm was found by Tianyu et.al. [6]. The prediction of 

steel-concrete composite beams was mentioned by Thirumalaiselvi et al. [7], while new ML 

implementations to predict reinforced concrete beams with and without stirrups via applying 

Random Forest (RF) were proposed by Junfei et al [8]. Yang et al. [9] introduced a novel 

method for finding the optimal initial electron beam parameters of a Linac, which aimed the 
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usage of statistical and ML algorithms for Monte-Carlo model. The traditional methodology 

to detect vibration-based destructions in civil structures to the implementations by ML and 

DL was modified by Avci et.al. [10]. The implementation of a data-driven approach to the 

shear strength of the SFRC beam was described by Rahman et. al. [11]. They applied 

Regression models and Ensemble Tree algorithms. On the other hand, Tsiatas and Aristotelis 

described the prediction of laminated composited beams using ML algorithms [12], and the 

implementation of ML algorithms to predict the residual stress in electron beams by Monte 

Carlo simulations was introduced by Debasish, et al. [13]. In [14], Ye and Yi introduced the 

application of a convolutional neural network to determine the working-condition beam 

pumping units using batch normalization. Furthermore, in [15], Mahesh et al. introduced an 

ML approach to predict the stress results of quadratic tetrahedral elements via the stress 

results calculated by the FEM. 

In addition, several researchers introduced the application of DL to the solution of ordinary 

and partial differential equations (ODE, PDE). Lagaris et.al. presented and generalized the 

application of NNs with the discretized domains and usage of trial functions for solving the 

first and second-order ordinary differential equations, systems of equations, and partial 

differential equations [16]. Han et al. [17] implemented NNs for higher order differential 

equations using the sigmoid activation function with the Nelder-Mead simplex algorithm, 

whereas the methodology for solving the problems based on the Galerkin methodology was 

proposed by Sirignano and Spilopoulos [18]. Moreover, Raissi et. al. improved the existing 

methods and introduced physics-based deep learning [19].  

The primary purpose of this paper is to introduce a new methodology for finding the 

solutions to Euler-Bernoulli beam problems and predicting the deflections. We use traditional 

ML models, such as LR, PR. DT, RF, KNN and NNs. After giving the overview of the Euler-

Bernoulli beam problem and the FEM overview, we describe the methodology and the 

optimization algorithms used in the calculations. Finally, we provide numerical examples by 

comparing the results found by the proposed methods and FEM or exact solutions. We used 

MATLAB for FEM calculations and Python for ML and DL implementation.  

2 FEM FORMULATION OF THE EULER-BERNOULLI BEAM PROBLEM 

The general definition of Euler-Bernoulli beam equation is as follows 

                                                                       
  
                                                 (1) 

for         [20]. Here      is the transverse deflection of the beam, L is the length of the 

beam,      is the transversely distributed load and         is the product of the modulus 

of elasticity   and the moment of inertia   of the beam. Appropriate boundary conditions 

should be satisfied by      and for solving the problem four boundary conditions are needed. 

For the weak solution of the beam, an isolated typical element              is selected and 

constructed the weak form over this element. Eq. (2) is obtained by applying the Galerkin 

method [20]. 

                                                           
  
            

    

  
                           (2) 

Here      is a test function that is twice differentiable with respect to x.  The first term of the 

Eq. (2) is integrated twice by parts to trade two differentiations to the test function    while 
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retaining two derivatives of the dependent variable  ; i.e., the differentiation is distributed 

equally between the test function and the dependent variable. The weak form can be 

expressed, by applying the partial integrating twice, as; 

                                                                                                                         (3) 

where 

                                                                          
    

  
                                (4) 

                                                                
      

    

  
    (5) 

Hermite cubic interpolation (cubic spline) functions are used for Euler-Bernoulli beams 

which can be expressed as; 
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where            . 

The variational form Eq. (3) requires that the interpolation functions of an element are 

continuous with nonzero derivatives up to order two. A four-parameter polynomial should be 

selected for      because there are four conditions (two per node) in an element  

                                                               
     

                                         (7) 

By using the continuity conditions;       is obtained by the Galerkin method as:  

                                                                   
   

  
                                                     (8) 

where the functions   
  are the cubic spline functions and the coefficients   

  are generalized 

displacements. FEM model of the Euler-Bernoulli beam can be obtained by substituting the 

FE interpolation Eq. (6) for   and the    for the weight function   into the weak form Eq. 

(3). The ith algebraic equation of the FE model is; 

                                                                  
   

  
      

                                                     (9) 

where 

   
       

    
 

   

    

  

    
 

   
    

                                                       
       

  
    

  
      

                                                  (10) 
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In Eq, (10)   
  denote the shear forces (where i is an odd number), bending moments 

(where i is an even number),      is the stiffness matrix and      is the force vector of the 

beam element [20]. 

Numerical approximations of the problems are found using FEM with Hermite 

polynomials. To avoid high discrepancy between the targets and predictions, a dataset with 

high number of finite elements are created. The usage of Hermite polynomials verify the C
1
-

continiutiy of the model. Because of being 3
rd

 order polynomials, the second derivative of the 

functions is linear and reach maximum at endpoints.  

3 MEASUREMENTS SIMULATION 

ML models employ large amounts of data to obtain a strong performance. The models are 

applicable for calculation of complex structures with high accuracy and less time of 

implementation.  

For the LR, PR, DT, RF and k-NN, training, validation and test sets have been generated 

by giving an external force and solving the equations by using their exact/approximate 

solutions. Afterward, the displacements at some points are calculated, and deployed into our 

models. Following the validation of the usage of models on validation sets, the values of 

deflections are predicted through test sets. The logic of creating the datasets is described in 

the end of the Section 2. In case of NNs, PyTorch library is used, in which the differential 

equations to the left hand side are deployed, and the exact/approximate equation regarding 

load      to its right hand side. Thus, the optimization algorithms are implemented to predict 

the solutions by creating the nodes, which accept the values obtained through the 

discretization by NNs.  

The models used for calculation are summarized below. 

3.1 Linear Regression 

Linear Regression [21] is a straightforward and efficient ML algorithm which explains the 

model's linear relation and the variability of the data. Following the satisfaction of Gauss-

Markov assumptions, the model should be optimized using the Stochastic Gradient Descent 

(SGD) methodology.  

A hyperplane can fit the n-dimensional space, where n is the number of independent 

variables. The general form of the linear equation applied in the LR model is as follows: 

                                                                    
 
                                                     (11) 

In Eq. (11),    is the regression coefficients, where    is the bias of the model,   is a 

vector of independent variables,   is an error term and    is a predicted value of the function. 

Once defined the equation, the cost function of the LR, Root Mean Squared Error (RMSE) 

function (Eq. (12)), is minimized.  

                                                               
 

 
         
                                       (12)  

In Eq. (12),   is the exact solution, and    is the predicted solution.  

3.2 Polynomial Regression 

Polynomial Regression [22] is a model used to determine the nonlinear relationships 

between the variables. Fitting the algorithm, it finds the optimum values for the problems. It is 
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worth mentioning that PR reduces the unbiased variance of variables under the Gauss-Markov 

assumptions' condition. 

The general form of PR is given as:  

                                                           
  

                                                           (13) 

3.3 Decision Trees 

Decision Trees [23] is a supervised ML algorithm, which aims to generate a tree model 

from the training data by continuously questioning the input data. Once the input data has 

reached the end of the tree, the target is determined. 

To begin with, the feature space     is partioned iteratively according to the splitting 

attribute. After partitioning the space, each region in the final section is determined as a 

target. Reaching these regions, the model automatically determines the target value. The 

equation for the DT is given as: 

                                                                 
 
                                                          (14) 

where     , and    is the disjoint region of the ending of DT.  

3.4 Random Forest  

Another supervised algorithm based on the combination of several decision trees is random 

Forest [24]. The tree classifiers are selected randomly from the inputs. Then, they are used to 

design DTs using the replacement (bootstrapping) method.  

According to the investigations, a positive correlation between the number of trees and the 

accuracy rate was observed. Obtaining the results from the trees, it finds the average of the 

results using the following formula:  

                                                         
 

 
       
 
                                                        (15) 

where N is the total number of trees and     is the average of each tree.  

3.5 k-nearest neighbour (KNN) 

k-nearest neighbour [25] algorithm is a non-parametric and lazy algorithm we use for 

regression. The model predicts the value of a new data by estimating the distances between 

the closest k values. The mathematical definition of the algorithm is: 

 Definition 1. Assume the pairs                   The values are included in the set of 

        , where d is the distance between the values and y is the label of x, such that 

          for (     ) and    – probability distribution. Taking into account any norm 

      on    and     , assume that                           is the reordering of the 

training data such that                                       [25]. 

3.6 Neural Networks 

Consider the following fourth order differential equation; 

                                                                                                     (16) 
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The boundary conditions can be of any form for the differential equation. In the equation, 

                  
 , and      represents the domain. To find the solution of Eq. 

(16), we apply the collocation method, after which the domain D and its boundaries S are 

discretized into       respectively. Following this, the Eq. (16) is rewritten as 

                                                            
            

            
                          (17) 

In NNs, the primary aim is the minimization of the cost function. To begin with, the trial 

function should be introduced.  

                                                         (     ) = (     ) + (     , (     ,   ))                                       (18) 

where  (     ,   ) is a single-output FFN function with parameters    and the input vector       . In 

Eq. (18), the first term should satisfy the boundary conditions of the problem, while      the second 

term is a function dealing with minimization problems. By Eq. (17) and (18), the 

minimization function is defined as: 

                                                       
             

             
             

 

                    (19) 

The minimization of Eq. (19) is considered as training of NNs where the error approaches 

zero. The estimation of the error term involves both the minimization of the function and its 

derivatives. Therefore, to calculate the gradient of the error functions, we find the gradient of 

the derivatives of the error functions.  

Let us assume a multilayer perceptron with n input units, where a hidden layer contains 

sigmoid units and a linear output unit. For an input vector, the output of the network is  

                                                                            
 
                                                (20) 

where            
 
       and     shows the weight from the input unit     to the hidden 

unit  ,    represents the weight from the hidden unit   to the output,     is the bias of hidden 

unit   and              . Moreover, H is the number of sigmoid units. 

Finding the derivatives of Eq. (20), 

                                                            
   

   
        

   
  

                                                  (21) 

Considering Eq. (21), 

                                                  
    

   
   

   

   
        

     
    

   
 
                                 (22) 

where      
 
   . By Eq. (22), the derivative of the network with respect to its inputs equals 

to FFANN with one hidden layer. 

After finding the derivative of the error from the network parameters, it is easy to 

implement minimization algorithms, which should be chosen according to the cost functions. 

Furthermore, the error rate should be minimized by: 

                                      
    

  
             

       
        

                          (23) 

During the implementation of the NNs, we use different activation functions and 

optimization algorithms to compare the results and define the most feasible solution. In this 

81



Z. Rasulov and U. (Babuscu) Yesil 

work, we use Limited-Memory BFGS (L-BFGS) [26], Adam [27], AdaGrad [28] and 

Adadelta [29] optimization algorithms. 

3.6.1 L-BFGS Optimization Algorithm  

Limited-memory BFGS (L-BFGS) optimization algorithm is based on the family of quasi-

Newton methods approximating the BFGS.  

L-BFGS uses the inverse Hessian matrix for variable calculation. The ability of the L-

BFGS algorithm to store only vectors demonstrating the approximate values causes the model 

to have linear memory fitting better than other optimization models.  

Let us define the search direction as         , where    is the Hessian matrix 

generated by limited memory quasi-Newton method. Then, the mathematical definition of the 

methodology is written as 

                                                       
            

                                               (24) 

where    
 

  
   

            
 ,   is an identity matrix. Using the optimization algorithms, 

[26] introduced the L-BFGS method for nonlinear equations with the global convergence.  

3.6.2 Adam Optimization Algorithm  

An extension of the SGD, continuously updating weights more efficiently, is called Adam 

optimization algorithm. The mathematical definition of the optimization model is the 

combination of different gradient descent methodologies. The capability to increase the speed 

of the gradient descent algorithms using weighted averages of the derivatives is the reason for 

us to prefer this model.  

Consider the momentum as 

                                                             
  

     

  

   
                                                (25) 

                                                                  
  

   
                                            (26) 

In the Eq. (25) – (26),    – weight,    – learning rate,   – loss function,    – sum of square 

of previous gradients,   – step size,   – discrepancy Using Eq. (25) and (26), the following 

equation is obtained: 

                                          
  

   
                 

  

   
 
 

              (27) 

Finally, the Adam optimizer can be written as 

                                                                 
 

      
                                              (28) 

where     
  

    
  and     

       
  

     
    

. 
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3.6.3 Adagrad Optimization Algorithm 

Adagrad is a modified SGD with a pre-defined learning rate. The mathematical definition 

of the algorithm is 

                                                                
 

     
                                                     (29) 

where           
  

   . Also, it is worth mentioning that the denominator in Eq. (29) 

represents L2 norm. 

 

3.6.4 AdaDelta Optimization Algorithm 

Another formulation of AdaGrad is AdaDelta, in which the learning rate decreases faster. 

Moreover, the learning rate is one for some problems, which is still being researched. L 

Let us define the leaky updates as following: 

                                                                      
                                               (30) 

where    stores a leaky average of the second moment of the gradient. Consider the following 

equation 

                                                                    
                                                          (31) 

where   
  

        

     
  , Then, the Adadelta algorithm can be written as 

                                                                     
                                            (32) 

4 NUMERICAL RESULTS AND DISCUSSION 

In this section, three numerical problems are solved to show the accuracy and efficiency of 

the proposed methodologies.  

Problem 1. Consider the following beam equation for         ; 

          
  
                                              

                                                                                                                              (33) 

with the following boundary conditions; 

                                                                                                      (34) 

The exact solution of the Problem 1[30] is 

                                                                    .                                                  (35) 

The trial function defined for the Problem 1 is: 

                                                                                                                   (36) 

Problem 2. Consider the following beam problem given in Fig. 1, where load distribution 

varies linearly, and is defined as  

                                                               
 

 
                                                         (37) 
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where      
  

 
 and      .                   

  

          
         

      for           [20].  

The boundary conditions of the problem are: 

                                                                                         (38) 

With reference to the given data for Problem 2 the following model can be created [17]. 

                                                                  
 

 
                                               (39) 

The exact solution of the Problem 2 is given in Eq. (40) [20]. 
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Figure 1. Cantilever Beam Problem under linearly varying load distribution. 

The trial function defined for the Problem 2 is: 

                                                                                          (41)   

Problem 3. Consider the following Euler-Bernoulli beam problem given in Fig. 2. The 

problem data for using the ML prediction are created by FEM data because of unknown exact 

solution. The solutions are obtained for 5, 6, 10 and 15 number of FEs to provide the accuracy 

of the solution. Fig. 3 shows the mesh sensitivity for FEM solutions of Problem 3. It can be 

seen from the graph given in Fig. 3 that deflection function converges each other for 5 and 

more than 5 finite elements. 

 

Figure 2. Sample Euler-Bernoulli beam problem 
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FEM solution of deflection function        for minimum number of FE (3 number of FE) 

is given in Eq. (42). 
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Figure 3.  Mesh Sensitivity for FEM solutions of Problem 3. 

The absolute errors between the models and the exact (for Problem1-2)/FEM (for Problem 

3) solutions are compared in Tab. 1 (a-b-c), respectively, for Problem (1-2-3). As is clear from 

these tables, all methodologies converge strong. Still, the errors obtained by PR are 

approaching zero faster when compared to other models, which proves the efficiency of this 

methodology. The solutions obtained by DT are robust, while the solutions of NNs and RF 

are almost the same. However, the weak convergence of the models are observed for LR and 

KNN models. 

To compare the performances of the models, MAEs of the algorithms are calculated in 

Tab. 2 for all Problems. It is clear that the performance of PR is the best for all the models as 

the values of the MAE is the smallest. The performance of DT is also strong, while the 

performances of LR and KNN are weak.  

x/Mod

el 
PR DT NNs RF LR KNN 

0 0 0 0 0 0 0 

0.4 2.54E-13 7.53E-08 1.12E-08 3.29E-06 6.36E-05 6.43E-06 

0.8 1.31E-13 7.65E-08 3.65E-08 8.91E-06 4.26E-04 7.86E-06 

1.2 1.07E-13 2.12E-07 1.16E-07 1.63E-06 8.36E-05 3.78E-06 

1.8 5.63E-14 5.42E-08 6.45E-09 4.25E-07 2.85E-05 8.92E-05 

2 0 0 0 5.63E-37 2.75E-25 9.36E-76 

(a) For Problem 1 

-0,4 

-0,2 

0 

0,2 

0 5 10 15 20 25 30 w
(x

) 

x 

Comparison of w(x) function for 
different number of FEs 

3 5 6 10 15 
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x/Model PR DT NNs RF LR KNN 

0 0 0 0 0 0 0 

0.6 6.61E-17 8.75E-10 2.86E-09 1.26E-06 3.58E-04 4.78E-06 

1.2 9.71E-17 3.23E-09 2.59E-09 9.29E-06 6.28E-03 2.67E-05 

1.8 4.15E-16 1.95E-09 4.03E-06 1.25E-05 4.67E-03 4.78E-05 

2.4 1.80E-16 7.77E-10 2.42E-06 7.09E-05 5.85E-03 4.60E-05 

3.0 4.89E-17 7.97E-25 4.24E-07 5.79E-05 8.42E-03 1.43E-05 

(b) For Problem 2 

x/Model PR DT NNs RF LR KNN 

0 0 0 0 0 0 0 

5 3.26E-16 5.46E-12 4.73E-11 8.35E-11 9.00E-05 1.26E-06 

10 4.13E-14 3.28E-12 8.73E-10 4.26E-10 6.01E-05 7.94E-06 

16 6.42E-14 7.53E-12 1.73E-10 9.67E-09 1.52E-04 4.26E-05 

22 5.72E-13 5.72E-12 3.26E-10 3.67E-09 4.78E-04 1.27E-05 

28 0 0 0 0 0 0 

(c) For Problem 3 

Table 1. Comparisons of errors by exact solution with different ML and DL models. 

 

Model Problem 1 Problem 2 Problem 3 

PR 8.38E-14 6.82E-17 1.13E-13 

DT 5.77E-08 1.16E-07 2.66E-11 

NNs 9.02E-08 1.36E-06 2.27E-08 

RF 2.55E-06 8.54E-05 9.43E-05 

KNN 4.24E-05 9.59E-05 4.35E-04 

LR 8.04E-05 5.66E-03 8.55E-04 

Table 2. MAEs of the ML and DL models for all problems. 

In turns of NNs, the same 4 optimization algorithms are applied for all problems. 

Obviously, from Tab. 3 (a-b-c), respectively for Problem (1-2-3), the L-BFGS optimization 

algorithm shows the best convergence to the exact solutions when comparing to other 

optimization algorithms. While the results found via Adam and AdaGrad are moderate, the 

performance of Adadelta is not satisfiable. 

 

x/Model L-BFGS Adam Adagrad Adadelta 

0 0 0 0 0 

0.4 4.32E-08 3.53E-07 7.46E-06 1.27E-03 

0.8 9.80E-08 7.78E-07 4.73E-05 2.75E-03 

1.2 9.32E-08 7.58E-07 9.54E-05 4.42E-03 

1.6 2.83E-07 8.14E-06 8.14E-05 1.02E-02 

2.0 0 0 3.52E-27 7.52E-27 

(a) For Problem 1 
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x/Model L-BFGS Adam Adagrad Adadelta 
0.0 0 0 0 0 
0.6 4.43E-08 6.80E-07 4.14E-06 4.55E-04 
1.2 4.54E-08 6.12E-07 2.46E-06 4.52E-03 

1.8 2.25E-07 4.63E-06 4.57E-05 8.52E-03 
2.4 6.89E-07 1.70E-06 4.33E-05 7.40E03 
3.0 6.25E-07 9.78E-06 1.06E-04 4.00E-03 

(b) For Problem 2 

x/Model L-BFGS Adam Adagrad Adadelta 

0 0 0 0 0 

5 4.73E-11 4.25E-10 4.25E-10 1.34E-07 

10 8.73E-10 3.15E-10 7.89E-09 4.32E-07 

16 1.73E-10 6.47E-09 3.62E-08 7.36E-06 

22 3.26E-10 5.46E-09 6.73E-08 1.78E-06 

28 0 0 0 0 

(c) For Problem 3 

Table 3. Comparisons of errors obtained by various optimization algorithms of the NNs. 

5 CONCLUSION 

In this paper, new approximation algorithms for finding the numerical solutions to Euler-

Bernoulli beam problems are investigated. The significant problems of the algorithms defined 

earlier are the time consumption and lack of accuracy. As a result of an increasing propensity 

in technology and ML and DL, a novel approximation approach is developed. In the paper, 

the novelties in this field are discussed, the definitions of FEM, and the ML and DL models. 

Following this, three numerical examples to show the efficiency and applicability of the 

proposed methods are provided. The obtained solutions either with the exact solutions or with 

the FEM solutions are compared. 

Concerning the obtained results, we conclude that the proposed methodologies converged 

to the exact solutions faster and easier compared to the literature results. Some algorithms 

show strong convergence, while others converged weakly. Because of the vitality of 

convergence, the most efficient methodology for finding the solutions of the Euler-Bernoulli 

beam equations is PR. Moreover, the results by DT treated with the hyperparameters and NNs 

with L-BFGS optimization algorithm are also satisfactory. Even though the results by RF with 

the regularization parameters fluctuated, the results found via LR and KNN are not feasible.  

Considering the results found in the paper, it can be summarized that ML and DL 

algorithms are be helpful and valuable when predicting the solutions to Euler-Bernoulli Beam 

Problems because of its accuracy and speed. Thus, the implementation of ML and DL models 

should also be expanded to the Mathematical and Physical fields. We are sure that this work 

opens the doors for many scientists and can provide better and easier solutions for future 

papers. 
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