
MATHEMATICA MONTISNIGRI      

Vol LVI (2023)      

      

 

2020 Mathematics Subject Classification: 12E05, 12E20, 12E30 .  

Key words and Phrases: Finite fields, Permutation polynomials, Complete permutation polynomials. 

SPECIFIC PERMUTATION POLYNOMIALS OVER FINITE FIELDS 

BELHOUT BOUSALMI 

 
Department of Mathematics, Higher Normal School of Laghouat, Box 4033, Algeria 

EDPNL & HM Laboratory of ENS-Kouba, Box 92 Algiers, Algeria 

Corresponding author. E-mail: belhout23@gmail.com 

DOI: 10.20948/mathmontis-2023-56-2 

 

Summary. We give sufficient conditions for polynomials of special forms to be permutation 

polynomials over finite field. More specifically, we construct several explicit classes of 

permutation polynomials from these forms over finite fields. We also present from these 

polynomials a new family of complete permutation polynomials.  
 

1 INTRODUCTION 

Let   be a prime number and let    be a finite field with   elements, where   is a power of 

 . We know that any finite field    is commutative and that its multiplicative group   
  is 

cyclic. A polynomial          is called a permutation polynomial of    if its associated 

polynomial mapping          from    to itself is a bijection. A polynomial         is 

called a complete permutation polynomial if both polynomials      and        are 

permutation polynomials of     

The study of permutation polynomials started with Hermite (1863) [1], for prime fields    

and later to Dickson (1897) [2, 3] for general finite fields   . Permutation polynomials have 

important applications in cryptography, coding theory, combinatorial designs (see [4], [5] and 

[6]) and motivation comes from the study of permutation groups [7]. Also other areas of 

mathematics and engineering. 

The construction of new classes of permutation polynomials is an interesting subject of 

study. Indeed we find in the papers of Lidl and Mullen [8, 9] some interesting open problems 

and one of them is to find new classes of permutation polynomials of   . In fact there are 

only a few classes of permutation polynomials that are known [10]. In general, it is not easy 

to construct them. 

In this paper, we have studied two families of composite polynomials over a finite field    

of the form 

     
   
     such that     ,    1         and          

Throughout this article, we denote       the greatest common divisor of any two integers   

and  . 

 The first family for                      with    is a fourth root of 

unity in   , and in this case we have the polynomial      
   
   is a permutation of  

   if             and         
   
    in   . 
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 The second family for               , in this case the polynomial 

     
   
   is a permutation of    if            and  

   

   
  

   

    in   . And it 

is a complete permutation polynomial for special values of     and  . 

2 MAIN RESULTS 

In this paper we prove the following results. 

 

Theorem 2.1 Let    be a finite field containing   elements, such that   ≡ 1 (mod 4), and let 

  be a positive integer, where          . We have the following results 

1. For every   a fourth root of unity in    such that          
   
    in     the 

polynomial  

         
      

    
   
     

   
        

is a permutation polynomial of   .  

2. For any             such that  
   

   
  

   

     in   , the polynomial 

         
      

   
   
   

   
     

is a permutation polynomial of   . 

 

Theorem 2.2 Let             and let   be a positive integer, where           . 

Then we have  

1. the polynomial          
      

    
   

     
   

        is a permutation 

polynomial of    for all           . 

2. the polynomial          
      

   
   

   
   

     is a permutation polynomial 

of    for all           . 
 

Using Theorem 2.1 and Theorem 2.2 we obtain the following two corollaries. 

 

Corollary 2.3 Let   be a prime number, such that    ≡ 1 (mod 4) and    , we set   
        . Then the polynomial 

    
      

   
   
   

   
     

is a permutation polynomial of    . 

 

Corollary 2.4 For every odd positive integer  , the polynomial 

              +         

is a permutation polynomial of   . 
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3 LEMMAS 

Before we proceed to the proof of our main results, we present the following elementary 

lemmas. 
 

Lemma 3.1 Let   be a prime number,   be a integer, and let   be a positive integer. Then 

  
 

 ≡   (mod  ). 

Proof. According to Fermat's little theorem, we have    ≡   (mod  ). And by recurrence, we 

get   
 

 ≡   (mod  ), for all positive integer  . 

 

Lemma 3.2 Let   and   be positive integers. And let   be a prime number, such that   ≡ 1 

(mod  ) and    . Then we have 

 
     

  ≡ 1 (mod  ). 

Proof. For    , we have 

                                      ). 

Since                   . Then by Fermat's little theorem, we find  

 
     

  =      
                  

         

 
 
             

4 PROOFS OF MAIN RESULTS 

Proof of theorem 2.1 We prove the first part of the Theorem 2.1. It suffices to prove that the 

induced map   is injective on   . Suppose that           for some elements   and   of 

  . If    , then     
      

    
   

     
   

        =0. Suppose    , then  
      

  

  
   

     
   

        . Put    
   

 , then we have 

                                                                   .                                            (4.1) 

And we also have          , it means that   is a fourth root of unity. This is 

equivalent to  

      or                  . 

If    , by equation 4.1, we have        , which contradicts the condition      

   
   
   . If    , by equation 4.1, we find that     it is a contradiction (   ). Then 

     . Now we suppose that     , and we put    
   

  and    
   

  then    
       . By symmetry, we have just the following three cases: 

 

Case 1: If       . From equation          , we get: 

  (     )          , hence  
 

 
     . Then the order   of the element 

 

 
 in the 

multiplicative group   
  divides (      , and by the condition (        , we obtain 

   . Therefore    . 
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Case 2: If     and    . From equation          , we get:   (     )   , hence  

 
 

 
         . Then we deduce that 

 
 
   
 

 
   
 

 

 

        
   

 =1. 

Then we have  
 

 
     

 

 
     , hence the order   of 

 

 
 in   

  divides (      , Since   

 , then      therefore (        , which contradicts the condition (        . 

 

Case 3: If     and    . We have                              . 

By the equation          , we get:       hence  
 

 
     , we deduce from the 

condition (         that    . The proof of the first part of the Theorem 2.1 is finished. 

 

To prove the second part of the Theorem 2.1, we follow the same method that we used to 

prove the first result. So it suffices to prove that the induced map   is injective on   . 

Suppose that           for some elements   and   of   . If    , then     
      

  

 
   

   
   

     =0. Suppose    , then  
      

   
   

   
   

     0. Put    
   

 , then 

                                                                          .                                                (4.2)  

And we have          ,   is a fourty root of unity. This is equivalent to  

      or              . 

Then by the equation 4.2, we obtain       ) or       which contradicts the 

hypothesis of the Theorem 2.1. Then      . 

Now we suppose that     . We put    
   

  and    
   

  then        . By 

symmetry, we get the only following three cases:  

 

Case 1: If      . By equation          , we have                , hence 

 
 

 
 
 

  . Then the order   of  
 

 
 in   

  divides (      , and by the condition (        , 

we find that    . hence    . 

 

Case 2: If     and    . From equation          , we get:                , 

hence  
 

 
 
 

 
   

   
. Then we deduce that  

 
 
   
 

 
   
 

 

 

  
   

   
 
   
 
  . 

Then we have     . Since    , then the order of      it implies that (         

which contradicts the condition (        . 

 

Case 3: If     and    . Then we have                   . By the 

equation          , we get:                 hence  
 

 
     , we deduce from the 
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condition (         that    . The proof of the theorem 2.1 is complete. 

Proof of theorem 2.2  

1. Let           , then      and     . We have 

       
   
        

     
             

           
  

By the Lemma 3.1, we have 

           
           

           

Since      is an element of   
 , then by Fermat's little theorem we have           , 

hence we deduce that        
   
   . Then   satisfies the conditions of the first part of 

Theorem 2.1. Therefore the polynomial      is a permutation polynomial of   .  

2. Let           . We show that   satisfies the condition of the second part of 

Theorem 2.1. We have  

 
   

   
 
   
 
  

   

   
 
     

 
  

   

   
 
                

. 

Since 
   

   
 is an element of   

 , then from the lemma 3.1, we have 

 
   

   
 
                

=  
   

   
 
  

  . 

Thus the polynomial      is a permutation polynomial of   . This completes the proof of 

the theorem. 

 

Proof of corollary 2.3 By taking     and       in the first part of Theorem 2.1, and 

according to the lemma 3.2, we get 

       
   
   

     
   . 

Then we have the polynomial     
      

   
   

   
   

     is a permutation polynomial 

of   . 

 

Proof of corollary 2.4 We can write 

              +         

=     
      

   
   
 + 

   
    . 

Since   is an odd positive integer, then         . And by taking     and      in the 

second part of theorem 2.1, we get  
   

   
 
   
 
      hence we find that the polynomial 

              +         is a permutation polynomial of   . 
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5 A NEW FAMILY OF COMPLETE PERMUTATION POLYNOMIALS 

For       and thanks to Theorem 2.2, we extract a new family of complete permutation 

polynomials over finite fields. This is formulated in the following theorem. 
 

Theorem 5.1 Let             . Then the polynomial 

        
      

     
   
     

   
     

is a complete permutation polynomial of   . 

 

Proof. We have 

        
      

     
   
     

   
     

                                                   =    
      

   
   
   

   
   ). 

And we have           
      

   
   
   

   
    , thanks to Theorem 2.2 (with 

     and     ), we find that both polynomials      and          are permutation 

polynomials of      . Then we get our desired result. 

6 EXAMPLES 

In the following we give many interesting permutation and complete permutation 

polynomials over some finite fields. 

Examples 6.1 

a) The polynomials                                      and      
          are permutation polynomials of     . 

 b) The polynomial               is a permutation polynomial of   , and that it 

represents the transposition (1 2). 

c) The polynomial     
         

   
      

   
      

     is a permutation polynomial of 

     , where (            with     . 

d) The polynomial                   is a complete permutation polynomial of      
 

Examples 6.2 Let   be a primitive element of    . By putting      we get that     
   And it is clear that     and     . Set      

   
  then we have 

 
   

   
 

    
 

        

Therefore we find that the polynomial                   is a permutation 

polynomial of    , where (       . 
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7 CONCLUSION 

In this paper, we have introduced and studied the following two classes of polynomials 

          
   
   and           

   
    such that                    

  and               , where   and   belong to finite field   . From these classes, 

we determine new families of permutation and complete permutation polynomials of       
In the next work, we will try to generalize our results from the present paper, so we will 

study the class of composite polynomials over a finite field    of the form 

     
   
     such that                 1         and          
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