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Summary. An approach to numerical simulation of three-dimensional electrical and 

thermal fields in high-temperature superconductors is described. In such a semiconductor, the 

phenomena of superconductivity are observed at high temperatures above the temperature of 

liquid nitrogen. The absence of a generally accepted theory of superconductivity leads to the 

need to study physical processes in semiconductor structures using mathematical simulations. 

The main attention is paid to the calculation of temperature and electric current distributions 

in large-size mesas with a self-heating effect. An efficient algorithm for solving the equations 

describing these distributions is constructed. The basis of the algorithm is an adaptive 

multigrid method on structured Cartesian grids. The adaptability is based on the Chebyshev 

iterative method for constructing the smoothing procedures at each grid level and for solving 

the coarsest grid equations. The adaptive technique allows us to realistically simulate the 

anisotropic phenomena. The functionality of the algorithm is demonstrated along with an 

example of solving an anisotropic model problem with discontinuous coefficients. 

1 INTRODUCTION 

This paper is devoted to a problem of numerical simulation of three-dimensional electro-

thermophysical processes in Bi-2212 semiconductors. In such a high-temperature 

semiconductor (HTS), the phenomena of superconductivity are observed at high temperatures 

above the temperature of liquid nitrogen, 77 K. 

The absence of a generally accepted theory of superconductivity leads to the need to study 

physical processes in semiconductor structures using three-dimensional numerical 

simulations. In the Bi-2212 the superconducting and dielectric layers form anisotropic 

structure with Josephson mechanism of the electric current through non-conducting zones. 

The self-heating effect of the Bi-2212 is intensively studied; see for instance [1–5]. In the past 

decade, significant progress has been achieved by the high-temperature superconducting 

modelling community [6] to develop computational models for scientific investigations and 

for constructing of practical engineering devices [7–14]. 

As a result, numerical simulation has been recognized as a powerful instrument for 

investigating the electrical and thermal behavior of superconductors, and of HTS in particular. 

For development of robust computational technique, we consider a mathematical model 

that takes into account the nonlinear electrical and thermal interactions. The electrical and 

thermal processes are modeled by a system of two coupled nonlinear differential equations for 

the temperature and the electric field potential. Physical fields in superconductors are 

anisotropic and of different scale nature. This is because the coefficients of thermal 
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conductivity and the electrical resistivity are highly anisotropic. These coefficients depend on 

the temperature and the spatial coordinates. We take into account some typical formulas for 

these coefficients and their temperature dependences. 

Due to nonlinearities some local features can be created by current-conducting hot 

channels. It is evident that efficient numerical models are needed to simulate these complex 

anisotropic phenomena accurately, and a coupling of the temperature and electrical current is 

critical. Calculations of such phenomena require the use of detailed three-dimensional grids 

with the large number of nodes, up to 910  for complicated HTS devices. 

The computational model introduced here is enabling us to model anisotropic phenomena 

realistically. We numerically compute temperature and electrical current distributions in 

mesas by solving jointly the non-linear heat conduction and potential equations with the 

adaptive multigrid method. 

For spatial discrete approximation we use a conventional seven-point discretization on 

non-uniform Cartesian grids. As a result of discretization and linearization, the initial 

boundary-value problem is reduced to a multiple calculations of the systems of the discrete 

elliptic equations. 

For solving these discrete equations we propose to apply the adaptive multigrid method. A 

detailed presentation of this algorithm, which is a version of R.P. Fedorenko classical method 

[15– 17], can be found in [18–23]. The adaptive multigrid is based on the Chebyshev iterative 

method which is used for constructing smoothing procedures at each grid level and for 

solving the coarsest grid equations. 

This adaptation procedure exploits the power method for an optimal Chebyshev 

polynomial. Convergence of such a power method is based on the property of Chebyshev 

polynomials to grow rapidly outside the segment of least deviation from zero. This approach 

provides an automatic adaptation during multigrid iterations. 

Experimental and numerical researches of Josephson structures are carried out in Russian 

and foreign scientific centers. In the Keldysh Institute of Applied Mathematics such a study is 

being carried out on the initiative of Prof. V.M. Krasnov, an employee of the Laboratory of 

Experimental Physics of Condensed Matter, Stockholm University. He deeply involves in 

investigation of HTS structures, see [5, 9–13]. 

The paper is organized as follows. In Section 2 we introduce the mathematical model. In 

Section 3 the finite-volume discrete model is presented. In Section 4 we describe application 

of the adaptive multigrid method in relation to the considered problem. In Section 5 we 

demonstrate the efficiency of the adaptive multigrid method as standalone solver for the heat 

conduction equation with the constant highly anisotropic coefficients. The results of self-

heating mesa computations are presented in Section 6. Some conclusions are given in the last 

section. 

2 MATHEMATICAL MODEL 

Inside a solid body, which is the parallelepiped 1 2 3= {( , , ) : ,  =1,2,3}x x x l x l
      , 

for simplicity, consistent temperature and electric potential stationary distributions are 

searched. We denote a point 1 2 3( , , )x x x  in three dimensional space 3  as x , and as well as 

( , , )x y z . 
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We use non-stationary formulation of the problem: in the parabolic cylinder 

0( ,  ) [ ; ]fr t x G t t    , 3 : the unsteady system of the coupled equations to find 

steady–state distributions ,T   is considered 

( ) ( )  T ( ) ,

.

T
с T k T T

t

t

  


 


      




  



(1) 

Here ( )k T  is the thermal conductivity tensor, ( )с T  is the volumetric heat capacity and 

( )T  is the electrical conductivity tensor. Tensors ( )k T  and ( )T  are assumed to be 

diagonal with the elements , ,xx yy zz    and , ,xx yy zz    respectively. These elements are 

given functions of temperature and coordinates. We specify time interval as 0[ ;  ]t t , 

0 0,t t  . In (1) the expression     reads as an inner product of vectors from 

3 . For an inner product in the space of grid functions we use a notation ( , )  . 

At any time 0t t , the functions ( )T r  and ( )r  satisfy to a boundary condition (BC) on 

the boundary   of the parallelepiped (on six faces = , =1,2,3x l   ). A conventional 

combination of BC types is possible. 

For the temperature, either the Neumann condition = 0T n   at all boundaries is set, or 

the Neumann condition is defined on the horizontal faces of the parallelepiped and the 

Dirichlet condition rest ВT T  is set on the vertical faces. The Dirichlet condition simulates 

constant cooling at some given temperature ВT , for example, 10ВT K . 

For the potential  , the Neumann condition = 0n   at the vertical faces is set, and a 

constant potential is maintained at the horizontal faces, upper and lower ones, i.e., the 

Dirichlet conditions are specified.  

1 2 1 2
3 0 3 0( , , ,  ) = 0.5 , ( , , ,  ) 0.5t x x l U t x x l U      (2) 

with a given value 0U . One can take 0 1U   V, for example. 

At 0t t , the initial conditions 1 2 3
0 0 0( , , , ) ,t x x x T T   , where 0 0, T  are the given 

functions or given constants, for example, 0 0, 0ВT T   . One can take the linear 

distribution of the potential along the vertical coordinate 3z : 

 30 0
0 3

3 3
2

U U
z l

l l
 

 
  


  

It is impossible to solve the equation for potential and for temperature independently, 

because the electrical conductivity ( )T   depends on the temperature significantly, and 

the intensity of heat release in a unit volume, i.e. the heat source ( )q T     , is 

nonlinear function of T ,  . The function ( , )q T   simulates the heating of a substance by an 
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electric current flowing in the sample. The presence of the time derivatives in the system (1) 

means that the stationary solution is computed by a time-stepping procedure. 

For a model problem of HTS, the resistivity components , ,xx yy zz   , Ohm m , can be 

given in the form 

 0

300
exp ,

150
xx yy zz xxa

T
    

 
   

 
. (3) 

The diagonal elements of the electrical conductivity tensor , ,xx yy zz   , 1 1  ·Ohm m  , 

have the form 1 , 1 , 1xx xx yy yy zz zz        . The components of the thermal 

conductivity tensor , ,xx yy zz   , 1 1W m K  , are set for the model case in the form 

0 1,xx yy zz xxk T k      with some empirical parameters 0 1,k k . The empirical 

formulas for the electrical and thermal conductivities are presented in Section 6. 

The volumetric heat capacity ( )c T , 3( )J m K , of a superconductor is set as a function of 

temperature T  and density  : 2 3
0 0( ) , 10c T c T c    . This function is determined by 

the specific heat mc ,  /J kg K , and density  : ( ) ( )mс T c T    for the superconductor 

Bi-2212, one can take the density 3 36 10 kg m   . 

The dependencies (3) are of a model nature. In the vicinity of the critical temperature 

85critT K  of the superconducting transition, the actual behavior of electrical conductivity, 

thermal conductivity and heat capacity is more complicated. 

After finding the steady-state solutions ,T   we compute the electric field =  E   and 

the electrical current density vector 

 = =J E    . (4) 

There are semiconductor structures of different geometric complexity. А description of the 

realistic mesa-type Bi2212 can be found in [12]. 

In this paper, we focus on temperature and current distributions in mesas with a self-

heating effect; see [1–7, 11]. It is difficult to experimentally obtain current and temperature 

distributions in mesas, therefore high performance computer simulation is required. For this 

purpose we develop an algorithm and computer code for numerical calculation of these 

distributions by solving the non-linear system (1). 

In this paper we present the basic elements of our numerical model for the case of a 

rectangular parallelepiped. Below we briefly give a scheme of the adaptive multigrid 

algorithm on structured Cartesian grids, see [18–23]. 

3 DISCRETE MODEL  

We consider a model mesa as a parallelepiped   of sizes x у zl l l  . Typical values are 

3, 1.5, 0.02x у zl l l    and 50, 50, 1x у zl l l   , m , for small-size mesa and 

large-size mesa respectively. We map this parallelepiped into the unit cube 3[0; 1]   with 

corresponding scale of the coefficients of the governing system. 

75



O.B. Feodoritova, M.M. Krasnov, N.D. Novikova, V.T. Zhukov 

In   we introduce a Cartesian grid { ,   0 }h nx n N      with the grid boundary h . 

The grid h  is non-uniform in each coordinate direction with the number of cells , ,x y zN N N  

respectively and depends on a parameter h  which characterizes the average cell size. The grid 

nodes are denoted as ( , , )i j kx y z , or ( , , )i j k , where = 0,..., , = 0,..., , = 0,...,x y zi N j N k N . 

The grid functions ,T  , the coefficients of equations, residuals of the equations and etc. 

are determined at the grid nodes of h . We construct a node-based discrete scheme with 

finite-volume method. For this purpose we integrate the original equations over each dual 

volume 1/2 1/2 1/2 1/2 1/2 1/2[ ; ] [ ; ] [ ; ]i i j j k kx x y y z z        associated with ( , , )i j k –node 

excluding the Dirichlet type nodes. If a grid index goes beyond values 0, , ,x y zN N N , then 

such an index takes the closest value from 0,..., , = 0,..., , = 0,...,x y zi N j N k N .  

The areas of six faces of the dual cell ( , , )i j k  are denoted as 

1/2, , , 1/2, , , 1/2, ,i j k i j k i j kS S S    and the cell volume is demoted as , ,i j kV . Evidently that 

, , 0i j kV   for the Dirichlet type nodes. The grid function space hU  is defined in the standard 

manner with the inner product  

 , , , , , ,
, ,

( , ) = ,i j k i j k i j k
i j k

u w u w V   

and the corresponding grid 2L  norm. Here, the sum is taken over all grid nodes. 

On the space hU  we introduce the discrete operators T
hL  and hL  which approximate the 

linear differential operators TL     and L     with the second order accuracy 

on smooth functions, taking into account the boundary conditions. Here, the coefficients 

,   are known functions of the spatial coordinates and they are determined by the 

temperature from the lower time layer. In 3D space the operators T
hL  and hL  are constructed 

using a finite-volume 7-point discretization. They are self-adjoint with non-negative 

eigenvalues. We suppose that some estimates for the bounds of the spectrum 0min   and 

mах  of each operator are known; these estimates can be calculated in a few simple cases 

[24]. In general cases, an estimate for mах  is obtained with Gershgorin’s circle theorem for 

estimating the eigenvalues of a matrix [25]. 

We introduce the semi-discrete approximation of the initial-boundary value problem (1) in 

an operator form: 

 T
h

T
c L T f

t


  


, (5) 

 hL g
t





  


. (6) 

We assume that the boundary conditions are taken into account with the definition of the 

operators T
hL  , hL  and the right-hand side functions f , g . 
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The values of a grid function u  at the time layer mt  is denoted as mu . The transition from 

the layer mt  to the layer 1m mt t     can be implemented in different ways. We write the 

convenient first order implicit scheme for the system (5) –(6) 

 1
1

1 1Tm m
h m m

T T
L T f

с с





   , (7) 

 1
1

m m
m mhL g 








   . (8) 

The right-hand sides in these equations are taking into account the Dirichlet boundary 

conditions in nodes adjacent to the Dirichlet type nodes. The grid function mf  includes the 

heat source  

 ( , ) ( )m m m m m mq q T T       , (9) 

which arises from Joule-heating effect. 

This implicit linear scheme can be written as a system of two operator equations 

  1 1
1 ,T

h m m mI C L T T C f  
     

   1m m mhI L g       , 

where I  is the identity grid operator, ( )mC c T I . We rewrite this system as two linear 

systems 

 = ,h h hA u f   (10) 

 = .h h hB v g  (11) 

The operators 1 1 T
h hA I C L     and 1

h hB I L    are N N –matrices, ,h hu v  are the 

seeking functions, 1 1 1,h m m h m mf T C f g g         are the given grid functions. 

Each of the equations (10) and (11) can be solved separately at each time step. 

Recalculation of the source (9) at each time step, as well as the coefficients of thermal and 

electrical conductivities, couples these equations. For convenience of description, we rewrite 

each equation in a compact form 

 =A u f , (12) 

where A  is a self-adjoint positive definite operator, corresponding to hA  or hB . 

We describe the spatial discretization of the governing equations using their representation 

in a more convenient form: 

 
3

0
=1

=
u

A A u f
x x

 


  
  

  
 . (13) 
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Here 0 1 2 3, , , ,A A A A f  are the given non-negative functions of coordinates 

1 2 3( , , ) ( , , )x x x x y z . In a discrete model the coefficients 0 1 2 3, , ,A A A A  are calculated at grid 

points. To calculate the fluxes, the coefficients 1 2 3, ,A A A  are additionally calculated on the 

faces of the dual cells 
1

{ , , },  
2

i j k  
1

{ , , },
2

i j k  
1

{ , , }
2

i j k  , i.e. on the faces passing 

through the centers of the geometric mesh cells 1 1 1[ ; ] [ ; ] [ ; ]i i j j k kx x y y z z     and the 

middle of the edges; denote these coefficients as 
1/2, ,

1
i j k

A


, 
, 1/2,

2
i j k

A


, 
, , 1/2

3
i j k

A


, 

respectively. Each of these coefficients is calculated as the harmonic mean of the 

corresponding nodal values. 

One considers the discretization of the heat source (9) 

 1 2 3( ) x y zq T q q q
x x y у z z

     
     

     
            

     
. (14) 

The grid approximation of the function q  is calculated at all nodes, except the Dirichlet 

type node for the heat equation. In the considered case, the Dirichlet BC is given only at the 

faces 0k   and zk N . For x   in each grid node ( , , )i j k  with the index 0 xi N   we 

have 

 
1 1

1 1

( , , ) ( , , )i j k i j k

i i

x y z x y z

x x x

   

 



 
. 

Therefore for such a ( , , )i j k –node  

  
2

1 1
1

1 1

( , , ) ( , , )
, ,

i j k i j k
х i j k

i i

x y z x y z
q x y z

x x

 


 

 

 
  

 
.  

At the faces 0i   and xi N  we have prescribed the BC 0x   , therefore 0хq   at 

these faces. At the nodes (0, , )j k  and ( , , )xN j k , the terms yq  and zq  are written in the same 

way. On the edges of the cube, which shares two faces with the Dirichlet and Neumann 

conditions, the Dirichlet condition has priority. The discretization of the terms ,  y zq q  is the 

same in the interior nodes. At the faces 0z   and zz N  we have prescribed the Dirichlet BC 

(2) for the potential and the Neumann BC for the temperature. Therefore the source function 

(14) must be computed at these faces. To provide such a procedure we discretize z   by 

the convenient three-point difference derivatives with second order of accuracy. 

For linear equations the implicit scheme does not require any restriction on time step size. 

But in our nonlinear case the choice of the time step size   is limited by an empirical rule: the 

growth of the heat source ( , )q q T   must be restricted. We require 1m tol mq q q   for 

transition from the layer mt  to the layer 1m mt t     with a given tolerance tolq . 
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4 GENERAL SCHEME OF THE ADAPTIVE MULTIGRID METHOD 

This section briefly presents the results of the development of the classical multigrid 

method [15-18, 21] in relation to the described problem. We assume that the system (12) is 

the result of the grid approximation of the boundary value problem for the equation (13). 

Various iterative methods are usually used to solve such a system. Size of these systems 

x y zN N N N    effects on the efficiency of the methods, and a value N  can be very large. 

Additional difficulties arise from anisotropy, which is also characteristic of the problem under 

consideration (1). 

For elliptic differential equations the multigrid method [15-17] is theoretically optimal: the 

computational complexity of the method grows linearly with an increase of unknowns. Its real 

efficiency depends on the implementation of the algorithmic elements. The main elements are 

intergrid transfer operators, smoothing operators and procedures for solving the coarsest grid 

equations. In this paper, we summarize the main elements of the multigrid method and the 

principle of automatic adaptation during multigrid iterations.  Detailed information can be 

found in [18-23]. 

Every multigrid iteration step consists of the transition from a fine grid level to the next 

grid level up to the coarsest grid and back (V – cycle). It is convenient to represent the 

multigrid method in a two-grid representation, describing the transition from a fine h –grid to 

a coarse Н  – grid. We rewrite the initial system of discrete equations at a fine grid level as 

=h h hA u f . 

On the coarse grid level, a correction system in the form =H H HA w g  is constructed. We 

construct the operator HA  with discretization on the Н –grid. The right-hand side Hg  is the 

constraint of the residual h h h hg f A u   on the coarse grid, i.e. H hg R g . Here P  and R  

are the interpolation and projection operators, they are conjugate, *R P . The operator P  

can be constructed with the trilinear interpolation. Along with a trilinear interpolation, we use 

an approximate solution of the local discrete boundary value problem. Such operators P  and 

R  provide a problem-dependent intergrid transfer and they provide robustness of the 

multigrid method for discontinuous coefficient equations, see [18]. 

In the two-grid representation the error propagation operator can be write as  

 1= ( ) ,p H h pQ S I P A R A S   (15) 

where I  is the identity operator, pS  is the smoothing operator. The given two-grid algorithm 

is recursively generalized to an arbitrary of grid levels. 

Smoother procedure pS  plays a key role in the multigrid efficiency. We propose to 

construct an explicit iterative Chebyshev smoother providing the ability to adapt during the 

multigrid iterations, see [21, 22]. This adaptive smoother can be explained together with the 

coarsest grid solver for the linear system =H HA y g  with ( )H h h hg R g A u   .  

For generality we consider a linear system (12) with self-adjoint and positive definite 

matrix A . To solve this system, one can apply the explicit Chebyshev iterative method [24] 

 1 1= ( )j j j ju u f A u     (16) 
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with an optimal set of parameters { j } and an initial guess 0u . Here 1, ...,j p  is the 

iteration number, and p  is a priori defined by the condition to reach a prescribed relative 

accuracy  : 0|| ||< || ||,pr r  where 0r  and p pr f A u    are the initial and final residuals. 

The number p  depends on   and the number min max    according to the formula 

         1 2,  ln 1 / ln 1 1p p             , (17) 

where min max0 ,   are minimal and maximal eigenvalues of A . This well-known iteration 

procedure is defined by the Chebyshev polynomial pF  of degree p , that deviates least from 

zero on [ ; ]min max   and is normalized by the condition (0) =1pF . The parameters j , 

1, ...,j p  are reordered for computational stability [24]. 

We use notations min  and max  for the exact eigenvalues, *
min  and *

max  for their 

approximate estimates. The values min  and max  are usually unknown. 

After running the algorithm (16), we obtain the relation   0p pr F A r  for the initial and 

final residuals. To start the algorithm it is necessary to set the bounds *
min  and *

max  of the 

spectrum of operator A . The desired bound *
maxmax   is estimated with the Gershgorin 

theorem [25]. As an initial bound of eigenvalue *
min  the Rayleigh–Ritz ratio 

   * , ,min Av v v v   can be used, where v  is the right-hand side of the linear system of 

equations. With adaptation any empirical upper estimate *
min  is appropriate. 

The relations * *0   min min max max        are guaranteed the convergence of the 

method (16). The desired estimate is specified during the external iterative process (or 

adaptation cycle). Let *
min  be a current guess, and *

new  is its update. The adaptation 

algorithm has the following form. One needs to solve a linear system with a prescribed 

accuracy tot , but firstly the lower accuracy value 1  tot   we set. For instance, 1010tot   

and 2
1  10  . We implement one step of the Chebyshev algorithm with the given data 

* *
1,   ,  min max    and obtain 0/pr r   with   0  p pr F A r . Here k   is an accuracy 

achieving in the current adaptation cycle with the number 1,....k  , and 0  r , pr  are the initial 

and final residuals. Assume that 1  . Then the new update is found as the unique root of 

the algebraic equation ( )pF   , therefore * arg( ( ) 0)min pF     . If the accuracy tot  is 

not achieved, we pass to a new adaptation cycle with * *
1,  ,  min max    and with the Chebyshev 

polynomial degree calculated by formula (17). 

An accuracy 1k     can be achieved at an adaptation step k . In general this means 

that the estimate *  min  is sufficiently accurate. Therefore we can perform the next step with 
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the previous data * *
1,    ,  min max   , or change the accuracy by setting 1 1  ( .... )tot k      . 

With this choice, the desired accuracy   tot  is achieved in one adaptation step. 

This adaptation procedure exploits the power method for the polynomial ( )pF A  which is 

an eigenvalue algorithm: for ( )pF A  this algorithm produces a number , which is the greatest 

(in absolute value) eigenvalue: max
F  . Evidently that nmax mi( )F

pF   . Convergence of 

such a power method is based on the property of Chebyshev polynomials to grow rapidly 

outside the segment of least deviation from zero.  

This adaptation algorithm can be easily integrated into the multigrid method. It provides 

the efficiency of solving the coarsest grid system by refining the estimate *  min  and it is well 

suited for constructing an adaptive smoother at each grid level, see [21, 22]. The adaptive 

Chebyshev smoother serves to reduce the initial residual on the high-frequency part of the 

spectrum *
min max[ ; ]c  . The high-frequency spectrum bound min

c  is unknown in advance and 

is found in adaptation process. Adaptation is turned on automatically if a relation 

0= /p smoothr r   is obtained on some grid level after the smoothing. This means that 

the given smoothing accuracy smooth  is not achieved. In this case, we refine the parameters 

of the smoothers using simple formulas, see [21, 22]. For example, for the Chebyshev 

smoother the parameters are updated according to the new boundary min
c  and the known 

upper boundary *
max . 

After updating min
c  at all grid levels, multigrid iterations are continued with new values, 

repeating if necessary adaptation (while 1smooth   ). As a rule, in calculations after 

several (2–3) multigrid iterations the parameters of smoothing are stabilized, the specified 

accuracy of smoothing smooths  is achieved, and the asymptotic convergence rate of the 

multigrid iterations becomes equal to the expected value 2
smooth . 

The presented technique exploits the explicit iterations therefore this method is suitable for 

the efficient implementation on ultra-parallel computers with potential scalability on a large 

number of processors. 

5 STANDALONE ADAPTIVE MULTIGRID SOLVER 

The problem of calculating a HTS structure is characterized by a high difference in the 

geometric sizes of the domain, highly anisotropic parameters, and the grid anisotropy can 

deliver an additional difficulty. 

Firstly we demonstrate the efficiency of the adaptive multigrid method as standalone solver 

for the equation (13) with constant highly anisotropic coefficients 

1 2 310000, 100, 1A A A   , 0 0A   in the unit cube   with the Dirichlet boundary 

conditions and with uniform and non-uniform Cartesian grids. The convergence rates of the 

multigrid iterations are characterized by the relation 1= / ,n ns r r   where 1,n nr r  are the grid 

norms of the residuals at two sequential multigrid iterations. The grid of cells 64 64 64   is 

taken, the number of grid levels is 3, the grids of the next levels are 32 32 32   and 
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16 16 16  . In the experiments, grids are taken up to 32048  cells. We set the smoothing 

factor = 0.5smooth . So, we try to achieve the condition = /before after smoothd r r   for the 

ratio of residual norms before and after smoothing at any stage of smoothing. This goal is 

achieved with the adaptive refining of the spectrum bounds. The coarsest grid equations are 

solved with relative accuracy 3=10ctol   using the Chebyshev adaptive method. Convergence 

of multigrid iterations is controlled by condition 0< tom tr r   with accuracy 14=10tot  . 

We compute this problem for two cases: using uniform and a non-uniform grids. Figure 1 

demonstrates on a logarithmic scale the evolution of the residual norm and the convergence 

rate 1= / ,n ns r r   with respect to the number n  of the multigrid iterations for a non-uniform 

grid. We use the geometric progression of mesh sizes in the vertical direction, so that the cell 

sizes in the vertical direction are equal to 0.1  for the lower and 410  for upper boundary of 

the unit cube respectively. For the both cases such graphics are practically similar. Adaptation 

works equally well. The computational costs are different: for the non-uniform grid CPU time 

increases by 25%. In terms of the number of smoothing iterations, the costs are 1100 and 

1620 iterations totally. The residual norm during multigrid iterations decreases from the initial 

value 710  down to 85 10 . Adaptation is turned on after the second multigrid iteration. 

 

Fig. 1. Multigrid iterations: the residual norm (solid line) and the convergence rate (dashed line) 

The convergence rate s  (dashed lines in Figure 1) stabilizes during the first 5-7 iterations 

at 0.27s  . It indicates that the multigrid asymptotic convergence rate is practically achieved. 

This value is close to the theoretical value 2 0.25smooths   . If we take the relative accuracy 

of coarsest grid solver as 9=10ctol  , the convergence rate s  stabilizes at the theoretical 

value 2 0.25smooths   . The computational cost practically does not increase at the same 

time. For this case one can observe influence of adaptation: the computation time is reduced 

by 25%, and the total number of operations for calculating residuals also is reduced. For 
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parallel implementation, it is important to reduce the number of multigrid iterations, which 

leads to a reduction of global operations like calculating residual norms. 

6 RESULTS OF SELF-HEATING MESA COMPUTATIONS 

We are adjusting the statement of the considered initial boundary-value problem under the 

following assumptions. A computational domain is the unit cube. Since we are seeking for a 

steady-state distribution of electrical potential and temperature, we assume the volumetric 

heat capacity ( )  1c T  . All coefficients ( ), ( )T T   correspond to a conventional 

semiconductor microscale structure x у zl l l  . We map this parallelepiped into the unit 

cube and set the input data as 

 

  

0 010, 1,

0.1 , 50 ,

100 exp 300 150 ,

b

xx yy zz xx

xx yy

T T U

T

T

   

 

  

    

    

  (18) 

 

1

3

5 10 , [0.375; 0.625] ,

4 10 , [0.375; 0.625].

xx
zz

xx

x

x










  
 

 

 (19) 

We focus on discontinuity of the component zz , see (19). This is an artificial introduction 

of a feature in order to demonstrate the capabilities of the method. 

The boundary conditions (BCs) of the six faces of the cube can be written in the form: 

0 0

0 : = 0, ; 1: = 0, ,

0 : = 0, = 0; 1: = 0, = 0,

0: = 0.5 , = 0; 1: 0.5 , = 0.

b bx n T T x n T T

y n T n y n T n

z U T n z U T n

 

 

 

       

         

        

 

The initial data at 0t t : 

 0 0 0 0( , , ) , ( , , ) 1 0.5ВT T x y z T x y z U z U       . 

We emphasize again this statement of the problem serves to demonstrate the 

methodological capabilities of our approach, and not to simulate a specific device. The 3D 

typical temperature distribution is shown on Figure 2.  

If we take constant values for the heat and electrical conductivities, then a solution of the 

governing system has too simple an analytical representation: 

 0 00.5 (1 ), 1 0.5zT x x U z U      . Using the resistivity components in the form 

(3) doesn't make the solutions complicated. To simulate a genuine non-trivial two-

dimensional solution, we take the input data (18), (19) and in additional define the BC for the 

potential   like a “hat” function on the down and upper faces 0z   and 1z  . These 

conditions define as 

 0 0( , , ,0) 0.5    ,      ( , , ,1) 0.5    ,t x y U b f t x y U b f         

at the faces 0z   and 1z   respectively. Here the function ( )f x  is given by the formula 
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0.5(tanh (a (    0.25) )+ 1), 0.5,

1 0.5(tanh (a (    0.75) )+ 1), 0.5.

x x
f

x x

 
 

  
  

Here ,a b  are free parameters, for instance 40, 0.1a b  . We have 

2( , , ,0)  sech (  (  - 0.25))x xt x y b f ab a x    . Therefore max ( , , ,1)x t x y ab   and the 

solution becomes two-dimensional one. The plot of the function ( , , ,1)t x y  with respect to x  

is shown on Figure 3. The function ( , , , )t x y z does not depend on y . 

 

Fig. 2. A typical temperature distribution 

 

Fig. 3. The profile ( , , , )t x y z  along Ox  at the point ( , ) (1, 0.5)z y   
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In computations we take a few grids with x y zN N N   cells with 

128, 256, 512x zN N  . Since the sought solution does not depend on y  we set 3Ny  . 

A numerical solution which is obtained on the grid 512 3 512   practically does not 

depend on the further grid refinement. Therefore we present the results on this most detailed 

grid. The parameters of the adaptive multigrid used to solve the implicit discrete system (7), 

(8) on each time level can be varied, but the results are given below for the following values: 

the four multigrid levels; the relative accuracy of the coarsest grid equations 3=10ctol  ; the

smoothing factor = 0.5smooth ; the accuracy of the multigrid iterations 610tot  . 

An initial time step size is 1 0.01  . In the time stepping we increase the time step size 

with 1 1, ( 1) , 1,2,...m m m m mt t m m         . As a result, a steady-state solution is 

achieved when 10m  . We control the solution stabilization in time with calculation of the 

norm of the grid functions 1 1,m m m m m mT T T          . The evolution of the norm 

of ,m mT    is shown on Figure 4. At 11m   the absolute values 

7max 0.1 , max 3 10m mT       , i.e. the relative error of the time stepping process is

less than 0.01 for temperature and less than 610  for potential. The difference in the errors has

clear explanation: in the heat conduction equation, the source is discontinuous in 

correspondence with (19). 

Fig. 4. The time evolution of the norm of m  and mT : 1 and 2 respectively

The Oxz  plane distribution of the potential is show on Figure 5. The profiles of the 

temperature and the vertical component Jz  of the electrical current density vector (4) are 

given on Figure 6, 7 respectively. We show the profiles along Ox  at the point 

( , ) (0.5, 0.5)z y  . In the central part of the domain, in accordance with (19), there is no 

85



O.B. Feodoritova, M.M. Krasnov, N.D. Novikova, V.T. Zhukov 

Joule heating, the temperature of this zone achieves 100T K  by the heating of this zone due 

to thermal conductivity. 

Fig. 5. Potential distribution in Oxz  plane 

Fig. 6. Temperature: the profile along Ox  at the point ( , ) (0.5, 0.5)z y   
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Fig. 7. The vertical component of the electrical current density vector: the profile along Ox  at the 

point ( , ) (0.5, 0.5)z y   

The presented numerical results prove the efficiency of the proposed approach in solving 

problems with anisotropic discontinuous coefficients, which is typical for HTS problem. 

7 CONCLUSION 

In this work, an efficient approach to the numerical modelling of coupled electric and 

thermal fields in high-temperature superconductor (HTS) is developed. The absence of 

accurate knowledge of superconductivity leads to the need to study HTS structures using 

mathematical simulations. We have modeled heat transport and the resulting spatial 

temperature distribution in the presence of Joule self-heating due to electrical current in mesa 

material.  

We have proposed a numerical technique to study temperature and current distributions in 

large-size mesas with a self-heating effect. The robust algorithm for solving the governing 

equations is constructed. The key element of the algorithm is an adaptive multigrid method on 

structured Cartesian grids. The adaptability allows us to realistically simulate the anisotropic 

phenomena that are typical for HTS problems. The numerical experiments show the 

robustness of the algorithm as standalone solver for highly anisotropic model problem as well 

as a solver for the system of two coupled nonlinear equations for the temperature and the 

electric field potential. 

In the case of the usage of the multigrid algorithm as a standalone solver the adaptive 

approach allows us to achieve automatically the prescribed convergence rate. In the case of 

two coupled nonlinear equations the efficiency of the multigrid can be improved by analyzing 

and exploiting a convergence history in the solution process. For optimal incorporation of 

time-stepping information in the solution process further researches are needed. 
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The role of interconnections of thermal conductivity, electrical resistance and the device 

geometry are under investigations. 

The adaptive method is suitable for the efficient implementation of the computer code on 

conformal block-structured grids with potential scalability on ultra-parallel computers with a 

large number of processors. 

The proposed computational technique can be adopted for solving a similar problem, for 

instance a problem of thermal breakdown in solid dielectrics [26, 27]. 

Acknowledgements. The study was supported by Russian Foundation for Basic Research 

(project no. 19-01-00670 A). 
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