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Summary. Taking into account the methods of thermodynamics of irreversible processes using 

the Onsager principle, a model of a multicomponent continuous medium is constructed, the in-

ternal energy of which is "free" of the kinetic energy of diffusion. The model is designed for an 

imperfect continuous medium with chemical reactions in the field of conservative external forc-

es. Generalized Stefan−Maxwell relations are obtained, which represent a system of hydrody-

namic equations of motion of a mixture with true inertial forces. The proposed thermodynamic 

technique made it possible to obtain a number of algebraic relations known from the kinetic the-

ory of gases for the transfer coefficients, relating, in particular, the coefficients of 

multicompo-nent diffusion with binary diffusivitys, thermal diffusion ratios with thermal 

diffusion coeffi-cients and multicomponent diffusion coefficients, true (molecular) thermal 

conductivity coeffi-cient for multicomponent mixture with partial thermal conductivity 

coefficient, which indicates their versatility. The results obtained are intended for modeling 

not only liquid imperfect solu-tions, but also gas-dust mixtures with a finely dispersed dust 

component. 

1. INTRODUCTION

Currently, there is a need to revise the stable paradigm associated with the definition of the in-

ternal energy of a continuous medium at the phenomenological construction of multicomponent 

hydrodynamics. In whole number of classical monographs on the thermodynamics of non equi-

librium processes, the authors, by analogy with the kinetic theory of multicomponent gases (see, 

for example, [1-7]), introduce into consideration the internal energy of a multicomponent medi-

um, defining it as the difference between the total energy and mechanical energy, the latter being 

determined in the approximation of equal acceleration of all components of the mixture. The in-

correctness of this definition is due to the fact that, with this approach, the internal energy of the 

mixture contains, in addition to the contributions from the thermal motion of molecules and short 

range molecular interactions, which is consistent with the usual understanding of internal energy, 

contains also and the kinetic energy of diffusion. 

So, within the framework of the classical approach, at modeling physical and mechanical pro-

cesses in a multicomponent medium, many authors (see, for example, [4-6, 8-18]) when deter-
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mining the balance equation for the specific internal energy of a mixture usually proceed from 

the law of conservation of the total specific energy ( )u ,tx

( ) 0uu
t


  


J (1) 

and the previously derived balance equation for the specific mechanical energy of the mixture, 

equal to the sum of the local kinetic energy of the center of mass and potential energy, 
21

2mu
  v . Here uJ is the local flow of total energy; ( ),t x   total density, ( ),t x   spe-

cific potential energy, ( ),tv x   velocity of the center of mass of a liquid element. These quanti-

ties are determined by the relations 

1

N

k
k

   , 1

1

N

k k
k





  v v , 1

1

N

k k
k





     ,  (2) 

where, ( )k ,t x , ( )k ,tv x and ( )k x are the density, velocity and potential energy of the mass unit

of component k , respectively. In this case, the specific internal energy ( ),t x of the mixture is 

determined by the ratio 

21
2mu u u      v  (3) 

However, the value of the internal energy ( ),,t x introduced in this way, as mentioned above, is 

not entirely correct, since the specific mechanical energy mu
  contains only the macroscopic ki-

netic energy of the components of the mixture in the center of mass system. 

At the same time, it is possible to determine another, more deserving of this name, internal 

energy ( ),t x  per unit mass of the mixture, which does not include the kinetic energy of diffu-

sion, by subtracting the specific mechanical energy ( )mu ,tx  from the total energy , 

equal to the sum of the specific potential energy ( ) x and the kinetic energy ( )Ku ,tx of all com-

ponents, 1 21
2

1

N

m K k k
k

u u 



      v ; as a result we will have

1 2 2 1 21 1 1
2 2 2

1 1
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 

              v v v v

1 2 21 1
2 2

1 1

( )
N N

k k k k
k k

c  

 

         v v w . (4) 

Here, ( ) ( )k k,t  w x v v , ( ) 1 /v ,t  x and ( ) /k kc ,t   x  are the diffusion rate, specific vol-

ume and concentration of the substance, respectively. It can be seen from relation (4) that the 

"internal" energy of the mixture ( ),t x used in the literature is not quite correct, since it differs 

from the true internal energy ( ),t x by an amount 21
2

1

N

k k
k

c


 w , associated with the kinetic ener-

gy of diffusion (due to the diffusion velocities ( )k ,tw x of the components of the mixture relative

( )u ,tx
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to the local center of mass). There is no doubt that in most cases the kinetic energy of diffusion 

can be neglected in comparison with the kinetic energy of the center of mass (the classical kinet-

ic theory of multicomponent gas mixtures was just developed in this “diffusion approximation”), 

however, in a more general case, the difference between the quantities ( ),t x and ( ),t x should 

be taken into account (for example, in the phenomenological design of models of liquid multi-

component non ideal solutions, models of the movement of gas-dust mixtures, when the volume 

concentration of the dispersed phase is low, etc.). 

It is important to keep this circumstance in mind also because classical multicomponent hy-

drodynamics is based on the fundamental Gibbs relation  

1

N

k k
k

TdS d pdv dc



     ,                                                         (5) 

written for a system in a state of "local" equilibrium (see [8]). In relation (5), the quantities 

( )T ,tx , ( )p ,tx and ( )k ,t x are, respectively, the equilibrium temperature, mixture pressure and 

specific chemical potential of the component k . However, this quasi-equilibrium relationship, 

which is, in essence, the relationship between the equilibrium entropy ( , , )kS S v c   and local 

quantities ( ),t x , ( )v ,tx  and ( )kc ,tx , it would be more correct to write it in a slightly different 

form, namely 

1

N

k k
k

TdS d pdv dc


     , because at equilibrium the diffusion fluxes kw should 

disappear. For this reason, the use of the fundamental Gibbs equation, which plays a central role 

in the theory of nonequilibrium processes, in the form (5) in the general case is not entirely cor-

rect (see, for example, [10], pp. 34-35; [14], p. 119). 

In this work, an attempt is made to construct models of multicomponent media, free from the 

above disadvantage. The development of models was carried out by us for non-ideal continuous 

media with chemical reactions located in the field of conservative external forces. For simplicity 

of presentation, we did not take into account here the antisymmetric of the pressure tensor, which 

is possible for a medium of this type, associated with the presence of an “internal” angular mo-

mentum [14]. 
 

2. LAWS OF CONSERVATION 
 

The stated goal of the work can be achieved only by applying Onsager's thermodynamic ap-

proach to simulate multicomponent and chemically reacting hydro-thermodynamic systems with 

consideration of the complete system of equations for conservation of mass, momentum, energy 

and entropy in both local and substantial form. 

We write the local form of the balance equation for an arbitrary intense quantity in the 

form 

( ) ( )a aa a
t


     


v J ,                                                    (6) 

where ( )a ,tx , ( )a ,tJ x , ( )a ,t x   respectively the specific value, flux density and density of the 

source of the quantity (the parameter can be a scalar, vector, tensor of the second rank, etc.). 
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Usually, the source density ( )a ,t x is divided into internal ( )( )i
a ,t x and external ( )( )e

a ,t x com-

ponents in accordance with the ratio ( ) ( )i e
a a a     , and the value ( )i

a is determined by inho-

mogeneities that exist locally inside the system, associated with the gradients of velocity, tem-

perature, density, etc., and the value ( )e
a arises from long-range nature of external forces affect-

ing the inner part of the system under consideration. Using equation (6), we write down the basic 

laws of conservation of mass, momentum, energy, entropy, etc. for a multicomponent system, 

while identifying the quantities with the corresponding physical parameters, introducing the flux 

and source densities for them. 

The mass balance equations for a reacting mixtures. To write the mass balance equation 

for a separate component, it is necessary to put in equation (6), ka c , a kJ J , a k    where

( )k k k,t  J x w is the diffusion flux of the mass of the k -th component relative to the center of

mass, 
1

r

k kj j
j

J


    is the mass of the k -component, that appears due to chemical reactions in 

a unit of volume per unit of time. 

Then the continuity equation for the substance k has the form: 

1

( )
r

k
k k k kj j

j

J
t




      


v J ,     ( 1,2,...,k N ).      (7) 

Note that the quantity kj jJ is the rate of formation of the component k per unit volume in

the j -th chemical reaction. The value kj divided by the molecular mass km of the component k

is proportional to the stoichiometric coefficient with which the substance k enters the equation of 

the j -th chemical reaction. The coefficients kj are considered positive when the components k

enter the right side, and negative when they enter the left side of the reaction equation. The scalar 

quantity ( )jJ ,tx is called the rate of the j -th chemical reaction. It has the dimension of mass per

unit volume per unit of time. 

Summing (7) over all k and taking into account the relations 

1

0
N

k
k

 J ,
1

0
N

k
k

  , (8) 

of which the latter expresses the law of conservation of mass as a result of all chemical reactions, 

we obtain the general continuity equation for the mixture in the divergent form usual for hydro-

dynamics 

( ) 0
t


  


v .            (9) 

In what follows, we will make extensive use of the operator relation 
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( ) ( )
da

a a
dt t


    


v ,    (..) (..) (..)

d

dt t


  


v ,                              (10) 

 

giving a connection between substantial and local changes in characteristics and allowing to 

write the differential balance equation (6) in the following substantial form 

a a
da

dt
    J .                                                          (6*) 

Note that relation (10) is a consequence of the continuity equation (9) and the definition of the 

total time derivative / /da dt a t a    v  of the value ( , )a tx in the accompanying coordinate 

system associated with an element of the medium moving with velocity ( , )tv x . 

Applying this relation to equation (7), we obtain the equation of the substation mass balance 

of the k -th component 

k
k k

dc

dt
    J ,    ( 1,2,..., 1k N  );   

1

1
N

k
k

c


 .                      (11) 

 

The equation of motion for a multicomponent mixture. Setting in equation (6) a  v ,

a J T , a  f , we obtain the law of conservation of specific impulse for any fluid continuum 

( ) ( )
t


     


v vv T f                                                         (12) 

where ( ),tT x is the symmetric tensor of pressures (or stresses) of the medium, caused by short-

range interactions between the particles of the system; ( ),tf x   external force acting on a unit 

mass of the medium; vv   dyadic product. 

Using the operator relation (10), we can write the equation of motion (12) in the form 

d

dt
   
v

T f .                                                   (12*) 

Equation (12) is valid for any continuum, but the expressions for the pressure tensor and the 

density of external forces for different continua are not the same. We will further consider Eq. 

(12) as a balance equation for the continuum obtained by a superposition N of continuous con-

tinuous media, the equations of motion for which (similar in structure to Eq. (12)) have the form: 

1

( ) ( )
N

k k k k k k k k kj
k j

t
 


      


v v v T f r ,    ( 1,2,...,k N ).                  (13) 

Here ( )k ,tT x is the symmetric pressure tensor of the k-ith component, ( T
k kT T ; this relation-

ship is a mathematical expression of the second Cauchy law for a multicomponent mixture); 

( )kf x - an external force acting on a unit mass of a substance k; ( )kj ,tr x - a vector (intercompo-

nent force) that determines the intensity of intercomponent exchange of momentum due to colli-

sions and intercomponent transitions of an impulse as a result of chemical reactions, kj jk r r . 

Next, an explicit vector expression kjr will be found. 

Summing equation (13) over k and using the relation 
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1

1 1

N N

k k k k k k
k k



 

     v v vv J J ,                                        (14) 

we obtain the following equation for the momentum balance of the mixture [19]: 

1

1 1 1

( )
N N N

k k k k k k
k k k

t


  

 
        
 
 

  v vv J J T f ,                      (15) 

where 1

1

N

k k k
k





 J J is the stress arising from the relative motion of components of different kinds. 

When writing equation (15), the equality 

1 1

0
N N

kj
k k j  

  r  was taken into account, which is a 

consequence of the fact that a change in the specific impulse ( ),tv x for a multicomponent con-

tinuum, occurring both as a result of collisions between particles of its individual continua (New-

ton's third postulate), and as a result of chemical reactions is equal to zero. Indeed, denoting 

through kj the mass of the component k, which is formed as a result of chemical reactions from 

the component j, we obtain the following expression for the corresponding change in the density 

of the specific impulse ( ),tv x of the total continuum: 

1 1

( ) 0
N N

kj j jk k
k j 

    v v . 

Total energy conservation for a mixture. The total specific energy for the continuum 

modeling the mixture as a whole satisfies the local balance equation (1) without a source. We 

now obtain this equation by adding the equations for the transfer of the total specific energy for 

each component of the system 

( )( )
k k

i
k k u u
u

t


   


J ,   ( 1,2,...,k N ).                             (16) 

Here ( )ku ,tx  is the total specific (per unit mass) energy of the k-component; ( )
ku
,tJ x   local 

flow of total energy carried by matter k; 
( )( )
k

i
u

,t x   the density of the internal source of total 

energy of particles of a sort ,k is equal, on the one hand, to the heat released in the gas of parti-

cles of a given sort due to collisions with particles of other kinds, and, on the other hand, to a 

change in the total energy of a component ,k as a result of chemical reactions, given by the ex-

pression. 
1

( )
N

kj j jk k
k

u u


   . The quantities ( )ku ,tx and ( )
ku
,tJ x satisfy the relations 

21
2k k k ku    v ,                                                              (17) 

 

k
k k k k k ku
u    J v T v q ,                                                        (18) 
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where ( )k ,t x and ( ) x  respectively, the internal and potential energy of the unit mass of the 

substance k; ( )k ,tq x  is the heat flux carried by the particles of the k-th component, determined 

precisely by the relation (18). 

Recall that in our discussion, for simplicity, we limited ourselves to considering only con-

servative external fields, which can be characterized by a scalar potential ( )k x per unit mass of 

a component k, i.e. the equations are assumed to be valid 

k k f ,    / 0k t   .                                                  (19) 

However, in the general case, forces kf can be of a different nature, in particular, associated with 

non-conservative electromagnetic external fields. 

Now summing (16) over all k and using the natural equality
( )

1

0
k

N
i
u

k

  , as well as the for-

mulas 

2 2 1 21 1 1
2 2 2

1 1

N N

k k k k
k k



 

     v v J ,                                            (20) 

2 2 2 211 1 1 1
2 2 2 2

1 1 1

N N N

k k k k k k k
k k k



  

       v v v v J v v J ,                    (21) 

1

1 1 1

N N N

k k k k k k k
k k k

p p

  

       T v v J τ v ,                                   (22) 

1

N

k k
k

c


   ,   

1

N

k k
k

c


   ,   

1

N

k
k

 q q ,                                      (23) 

2
21 1

2 2
1

N
k

kk

u


     



J

v ,    

1

N

q k k
k

h


 J q J                            (24) 

k k kp T Ι τ ,   

1

N

k
k

p p


  ,   1
k k k kh p     ,                                   (25) 

we obtain the total energy conservation law for the total continuum 

21
2

1 1

( ) 0
N N

q k k k k k
k k

u u p
t

 

    
            

    
 v v J v J τ v .       (26) 

Here ( ) kk kp ,t Tnx , ( ) /k k kn ,t m x , km , ( )kh ,tx  and ( )k ,tτ x   respectively, hydrostatic 

pressure, number density, molecular weight, tensor of viscous stresses of the substance k; 

( ), ( ), ( )qT ,t ,t ,tx J x q x   respectively, the temperature, the density of the total heat flux and the 

reduced heat flux in the total continuum; 

1

N

k
k

p p


   the hydrostatic pressure of the mixture at a 
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given temperature (Dalton's law); k  is the Boltzmann constant. When using the operator relation 

(10), equation (26) can be given the form: 

21
2

1 1

N N

q k k k k k
k k

du
p

dt
 

   
          

   
 J v J v τ v .                   (26*) 

 

Potential energy balance. Multiplying the non-discontinuity equation (7) for the substance 

k by k , summing over k and using (19) and (23), we obtain the equation for the local balance of 

the potential energy  of the mixture in the form 

1 1 1

( )
N N N

k k k k k k k
k k k

t
  

   
            

   
  v J f v .                   (27) 

If we turn to equation (6), then such a comparison allows us to conclude that the first term 

on the right-hand side of (27) should be considered as a term corresponding to “external” 

sources, and the second term should be considered a term corresponding to an “internal” source 

of potential energy. Note that the density of the internal source (i)

1

N

k k
k




    vanishes in all 

those cases when, due to chemical reactions, the equality 

1

0
N

k kj
k

   ,   ( 1,2,...,j r ).                                             (28) 

The fulfillment of this equality for the gravitational field is ensured by the conservation of mass. 

Taking into account the condition (i) 0  , the substantial form of the balance equation for the 

potential energy of the mixture takes the form 

1 1

N N

k k k k
k k

d

dt
 

   
        

  
 J v f f J .                                 (27*) 

 

Equation of the balance of the kinetic energy of the mixture. The derivation of the equa-

tion for the balance of kinetic energy is carried out as follows. Let us preliminarily rewrite the 

equation of motion of a multicomponent medium (15) in the form 

1 1

( ) ( )
N N

k k k k k k k k
k k

p
t

 

 
        

 
 v v v τ f ,                            (29) 

or in substantial form 

( )

1 1

kN N
k

k k k
k k

d
p

dt
 

  
       
  

 
v

τ f v .                               (30) 

Here ( )/kd dt is the total time derivative (substantial differential operator) for the component k , 

which is determined by the relation 
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( )(..) (..) (..)
(..) (..)

k

k k k k k
d d

dt t dt

 
         

 
v J .                           (31) 

Note that in deriving (30) we used the identity 

( ) ( ) ( )k k k k k k k k k        v v v v v v  

 ( ) /k k k k k kt      v v v                                           (32) 

Now multiplying equation (30) scalarly by 1
k k k

 v v J  and taking into account definition 

(31), as a result we obtain 

2 ( )
21

2
1 1 1

/ 2 kN N N
k k

k k k k k
k k k

d d
p

dt dt
  

        
               
 

       

  
v v

J v v τ f v .   (33) 

Finally, for the final derivation of the equation for the balance of specific kinetic energy, we 

calculate the substantial derivative with respect to time /Kdu dt , using equations (11) and (33) 

for this; as a result we will have 

 
2 2

1 1
2 2

N N
k kK

k k k
k k

du d

dt dt
 

 
       
  
 

 
v v

J  

 
( )

2

2
1 1

1

2 2

kN N
k k

k k k k
k k k

d
p

dt
 

    
           
      
 

v
J v J J v τ f .         (34) 

 

Mechanical energy balance for a mixture. Let us define the total mechanical energy per 

unit mass of the mixture as the sum of kinetic energy ( )Ku ,tx and potential energy ( ),t x . Add-

ing (27*) and (34), we obtain the following equation of the substantial balance of the quantity 

( )mu ,tx  

21
2

1

N
m

k k k
k

du

dt


   
       

   
 J v  

( )
11

2
1 1

( )( ) ( )
kN N
k

k k k kj jk k j
k j

d
p

dt


 

 
 

               
  

 
v

J f v v v v τ .       (35) 

When writing this equation, the transformation was used 

22 21 1
2 2

1 1 1

( )
N N N

k k k k k k kj jk
k k j

 

  

 
 

         
  

  J J J   

1 1 11
2

1 1 1

( ) ( )
N N N

jk
k k kj jk j k j kj jk

k jk j j

  

  

   
               
     

  
JJ

J J  
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11
2

1 1

( )( )
N N

k k kj jk k j
k j



 

 
 

       
  

 J v v .                                     (36) 

The internal energy balance equation for a medium. Subtracting equation (35) from 

equation (26 *), we find the internal energy ( ),t x balance equation in the following form: 

( )
1 1

1 1

( )
2

kN N
kj jkk

q k k k k k k j
k j

dd

dt dt
 

 

     
           

  

 
v

J J f τ v v  

1

: .
N

k k
k

p


   v τ v                                                        (37) 

By the way, we note that the above phenomenological derivation of the balance equation for the 

specific internal energy of the mixture (when taken into account in the kinetic energy of diffu-

sion) was not previously known (see the remark on p. 119 in the cited monograph I. Gyarma-

ti[14]). 
 

3. THE PRODUCTION OF ENTROPY IN REACTING MIXTURES 

AND LINEAR KINEMATIC CONSTITUTIVE EQUATIONS 
 

If we put in the general balance equation (6) a S , a sJ J and, a S   then we obtain the 

local equation of the balance of the entropy of the mixture, the substantial form of which will 

have the form: 

0S S
dS

dt
    J ,                                                     (38) 

where ( )S ,t x  and ( )S ,tJ x  are the intensity of the "source" and the flux of entropy, respective-

ly. To find an explicit form for these two quantities, we substitute in the fundamental Gibbs 

equation (5), previously written along the trajectory of the center of mass of the physical elemen-

tary volume and taking the form 

1

N
k

k
k

dcdS d dv
T p
dt dt dt dt




    ,                                               (39) 

derivatives /d dt , /dv dt and /kdc dt ,taken from equations (37), (10) and (11), respectively. As 

a result, we get 

1

/
N

q k k
k

dS
T

dt


   
      
 
   

J J  

 

1 1 1

1
:

N N r
k

k k q k k j j S
k k j

T
T J A

T T T
  

    
            

   

  J Λ J τ v .      (40) 

Here the so-called chemical affinity for the j-th reaction is introduced, defined as follows: 
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1

( )
N

j k k
k

A ,t


  x     ( 1,..., )j r ,                                               (41) 

and thermodynamic forces 

( )
1 11

2
1

( ) ( )( )
k N
k

k k k k k kj jk k j
j

d
,t

dt
 



         
v

Λ x f τ v v .          (41*) 

It should be noted that in the general case, energy dissipation ( ) 0ST ,t x , which is a bilinear 

positive definite quantity, is determined by a set of generalized thermodynamic flows ( ),tx

and the corresponding generalized thermodynamic forces ( ),tx  

1

( , )
f

S j j
j

T


   ,                                              (42) 

where f is the number of independent scalar flows ( )j ,tx  and forces ( )j ,tx  [10]. In this case, 

thermodynamic flows and forces can be defined, generally speaking, in different ways. It is only 

necessary that they be coupled to each other by relation (42). The choice of their type in each 

specific case depends on the convenience of considering the problem. A consequence of the ab-

sence of interference of flows and thermodynamic forces of different tensor dimensions in an 

isotropic system (Curie principle) is the fact that vector phenomena of diffusion and heat con-

duction can be considered independently of scalar or tensor phenomena. In this work, we will 

focus on the derivation of the constitutive relations only for vector phenomena. 

For energy dissipation due to diffusion and thermal conductivity, we have the following 

expression 

1

( )
N

S q q k k
k

T ,t 



     x J X J X ,                                            (43) 

where 

1
( )q ,t T

T
  X x ,    ( ) k

k k,t T
T

 
  X x Λ ,   ( 1,2,...,k N ).                   (44) 

In order to be able to compare the constitutive relations (derived further by methods of 

nonequilibrium thermodynamics) for the thermodynamic flows of diffusion ( )k ,tJ x  and heat 

( )q ,tJ x  with analogous relations obtained by gas-kinetic methods (see, for example, [2,3]), we 

express gradients of chemical potentials ( )k ,t x  through gradients of thermo-hydrodynamic pa-

rameters. Considering further the multicomponent medium as a non-ideal system, we write down 

the chemical potential ( )k ,t x  per unit mass of the component k in the form [20]. 

k
( ) ( , )k k k k

k

T
T,p,x T p lna

m
    ,    ( 1,2,...,k N ),                           (45) 
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where ( , )k T p
 is the chemical potential of the pure component k at a given temperature T and 

pressure p ; k k ka x  , ( )k kT,p,x , kn , /k kx n n  activity, activity coefficient, number den-

sity and molar concentration of the k-th component, respectively; 

1

N

k
k

n n


  is the total numeri-

cal density of the system. For imperfect mixtures, activity ( , , )k k ka a p T x  is determined from 

theory or experiment in the same way as function ( , )k T p
 . 

If we now use the well-known thermodynamic relations [20] 

2
,k k k k

kp T

h v

T T p mT

    
     

    
,     ( 1,2,...,k N ),                              (46) 

we get 

,( )k k p Tk k k

k k k

a v hT
T p T

T m a m T

 
      
 

,    ( 1,2,...,k N ).                     (47) 

Here, ( , )kv t x and kh are respectively the partial specific volume and specific enthalpy of the k-

th component. Substituting (47) into (44) and (43), we find 

1

( )
N

S q k k
k

T ,t


    x q X J X ,                                                (48) 

where 

( , ) ( )k
k k

h
t T ,t

T
   X x X x ,

k
( ) k

k p T k
k k

vT
lna p

m m



   Λ    ( 1,2,...,k N ).       (49) 

 

Phenomenological relations for flows through forces for a multicomponent medium. In 

states close to equilibrium, flows can be represented as linear functions of forces (the main pos-

tulate of thermodynamics of irreversible processes): 

00
1

( ) X X
N

q joj
j

q ,t  
 



 x ,                                                (50) 

0
1

J ( ) X X
N

k q jk kj
j

,t  
 



 x ,   ( 1,2,...,k N ).                     (51) 

The indices here , 1,2,3    refer to a rectangular coordinate system. Kinetic coefficients kj
  

( , 1,2,...,k j N )  are tensors that depend on the defining parameters characterizing the geomet-

ric symmetry of the medium. In what follows, we will consider isotropic media with respect to 

the full group of orthogonal coordinate transformations. According to the general theory of ten-
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sors [12], the symmetry properties of isotropic media are fully characterized by the metric tensor 

g ; all tensors will be tensor functions of the metric tensor only: 

g , ( , 0,1,2,..., )kjkj k j N    . 

For an isotopic medium in a rectangular coordinate system  

1, ;
g

0,
     

   
  

   

and the phenomenological equations connecting thermodynamic flows and forces take the form 

00 0
1

( )
N

q j j
j

,t


   q x X X ,                                                       (52) 

0
1

( )
N

k k q kj j
j

,t


   J x X X ,    ( 1,2,...,k N ).                                     (53)  

Once linear relations (52) and (53) are postulated, Onsager's theorem gives 

kj jk   ,    ( , 0,1,2,..., )k j N .                                                (54) 

A number of additional relationships follow from the fact of the independence of forces [10] 

1

0, ( 0,1,2,..., )
N

kj
j

k N


   .                                                 (55) 

Thus, 
2( 1)N  of the coefficients, there are 1

2
( 1)N N   independent phenomenological coeffi-

cients ( , 0,1,2,..., )ij i j N  . 

Diffusive thermodynamic forces. For further purposes, it is convenient to material relations 

(52) and (53) for thermodynamic flows ( ),tq x and  ( )k ,tJ x  can be written using some other lin-

early dependent vectors 
( )( , ),a
k td x closely related to ( , )k tX x . This can be done, for example, as 

follows: put 
( )( ) / /a

k k kk ,t p p  d x X K and define a vector K common for all components k 

from the condition 

( )

1

( ) 0
N

a
k

k

,t


d x ;                                                             (56) 

then, taking into account (49), we obtain 

,
1 1 1

k 1
( )

N N N
k

k k k k p T k k k
k kk k k

vT
c c lna p p c

m m



  

 
         
  
 

  K X Λ Λ .      (57) 

When writing (57), the GibbsDuhem relation was taken into account for the case of constant 

pressure and temperature 
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,
, ,

1 1 1

( )
0 ( ) k ( )

N N N
k p T

k k p T k j k p T
kk k k

lna
T p x lna

m
  


          

and the property 

1

1
N

k k
k

n v



  for partial specific volumes kv
  (see [10]; p. 225). 

Using (49) and (57), vectors 
( )( )a
j ,td x  can be given the form: 

( )
,

1

( ) ( )
N

j ja
j j p T j j j k kj

k

c c
,t x lna n v lnp

p p




       d x Λ X .  

If we now exclude vectors ( )k ,tX x from this formula using expression (49), then as a result we 

will have 

( )
,

1

( ) ( )
N

j j j ja
j j p T j k kj

k

n v c c
,t x lna p

p p





 
        
 
 

d x Λ Λ ,   ( 1,2,..., )j N .     (58) 

 

These vectors are usually called the diffusive thermodynamic forces of the component (see, for 

example, [3,6]). 

Finally, the vectors 
( )( )a
k ,td x written taking into account expressions (42) take the following 

final form 
 

( )
( )

1

( )1
( ) ( )

2

k N
kj jka k

k k k k k jk
j

d
,t

p dt


   
      




v
d x τ f v v . 

,( )k p T
k k k

k

a
px n v p

a


 
   



                                                    (59) 

When writing this expression, we used, following from (30) and (42), the transformation 

 

( )

1 1 1

( )
( )

2

kN N N
kj jkk

k k k k k k k j
k k j

d
p

dt
  

    
          

  

  
v

Λ f τ v v  

 

1 1 1 1 1

( ) ( )
( ) ( )

2 2

N N N N N
kj jk kj jk

k k k j k j
k k j k j

p p
    

     
           v v v v v . 

Regarding expression (58) for vectors 
( )a
kd , it is important to note the following. In the case 

when the contribution of the kinetic energy of diffusion to the mechanical energy of the mixture 

(in this case k kΛ f ) is not taken into account, and the multicomponent medium is a mixture of 
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ideal gases (for which , kk ka x p Tn  the partial molar volume is also 1 /kv n  ), this expres-

sion is reduced to the form 

1

N
k k k

k k k j j
j

x c c
x p

p p


 
        
 
 

d f f  

widely used in the kinetic theory of multicomponent gases  [2,3]. 

Further, for brevity, in expression (59), we will further use the notation 

,( )k p T
a k k k k

k

a
p p n v p

a



    .                                                (60) 

Substituting now vectors 
( )/ak kkp  X d K into equations (52) and (53) and taking into ac-

count relations (55), we obtain the transport equations in the form: 

( )0
00

1

( )
N

ak
q k

kk

,t p



  


q x X d ,                                              (61) 

( )
0

1

( )
N

jk a
j j q k

kk

,t p



  


J x X d ,    ( 1,2,...,j N ).                               (62)  

We now use property (56) for vectors 
( )a
kd and relations (54) and (55), introduce (by analogy 

with the kinetic theory of gases) generalized diffusion coefficients ikD , generalized thermal dif-

fusion coefficients T
iD and a coefficient through which the thermal conductivity coefficient 

will be further expressed  . Then 

( )

1

( )
N

a
Tk k

k

,t T p D


    q x d ,                                              (63) 

( )

1

( )
N

a
i i Ti i ik k

k

,t D lnT D


    J x d ,    ( 1,2,...,j N ),               (64)  

where, by definition, it is assumed 

00 /T   ,   0 0/ /Tk k k k kD       ,   ( 1,2,...,k N ),               (65) 

 

/ , ( , 1,2,..., )ik ki ik i kD D p i k N      .                              (66) 

 

According to relations (55) connecting the kinetic coefficients 0k  and ik , the generalized dif-

fusion and thermal diffusion coefficients introduced by us are linearly dependent: 

1

0
N

k Tk
k

D


  ,      (1)    

1

0
N

k ki
k

D


  ,     (2)     ( 1,2,...,k N ).            (67)  
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Thus, we have 1
2

( 1)N N  independent multicomponent diffusion coefficients ijD , which, to-

gether with independent thermal diffusion coefficients and the coefficient, will give independent 

transport coefficients in accordance with the general Onsager theory (see (52)-(55)). Expressions 

(63) and (64) in the particular case of ideal mixtures identically coincide with similar relations 

obtained phenomenologically, for example, in the monograph [13]. 
 

Thermal diffusion relations. It is known that thermal diffusion is an effect of the second 

order of smallness, important only in those cases when there is a large difference in the masses 

involved in the transfer of components. For further purposes, it is convenient to introduce new 

transfer coefficients to describe the effects of thermal diffusion  the so-called thermal diffusion 

ratios Tk ( , )t x : 

1

k
N

ki Tk Ti
k

D D


 ,   ( 1,2,..., )j N ,                                                (68) 

1

( , ) 0
N

Tk
k

k t


 x .                                                              (69) 

Thermal diffusion ratio k ( , )Tk tx characterizes a measure of the relative importance of thermal 

diffusion in relation to ordinary diffusion. Due to the correlation (67(2)), the determinant of the 

coefficients of the system of equations (68) vanishes. The only solution to the system of homo-

geneous equations corresponding to equations (68) is the N -component vector of mass concen-

trations /c    , but, according to (67(1)), this vector is orthogonal to the N -component vec-

tor of thermal diffusion coefficients. Thus, equations (68) have a solution in the form of a certain 

vector Tk with components k ( , )Tj tx  ( 1,2,..., )j N  determined up to some arbitrary constant 

multiplied by k ; condition (69) ensures the uniqueness of the vector Tk . 

When using coefficients kTj , expression (64) for the diffusion flux ( , )i tJ x can be written in 

the form of the following generalized Fick's law: 

 
1

( , ) k
N

i i ik k Tk
k

t D lnT


   J x d ,    ( 1,2,..., )i N .                            (70) 

We now make the following important remark regarding relation (63) for the heat flux

( , )tq x . The coefficient  cannot be determined as a result of direct experimental measurement, 

since the temperature gradient in the gas mixture causes thermal diffusion and, therefore, leads to 

concentration gradients. Therefore, even in stationary processes, the vectors ( )a
kd are not equal to 

zero, which means that the heat flux due to the temperature gradient is always accompanied by 
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the heat flux due to the concentration gradients. Using relations (64), (66), and (70), it is possible 

to express vectors 
( )a
kd in terms of diffusion fluxes and temperature gradient: 

N N
( ) ( )

1 1 1 1

1N N
a a

Tk kj Tj Tj j Tjk k
jk k j j

D D k k D lnT
   

 
     
 
 

   d d J .                    (71) 

 

Substituting this expression in (63), we obtain the defining relation for the vector of the reduced 

heat flux in the form 

1

k
( )

N
Tk

k
kk

,t T p


  


q x J ,                                                    (72)  

where ( , )t x is the true (molecular) thermal conductivity coefficient of the multicomponent mix-

ture, 

1̀

( , ) k k
N

Tj Tj
j

t n D


    x .                                                  (73) 

It is this coefficient that can be directly measured experimentally in a stationary system, since in 

the stationary case all diffusion fluxes ( , )j tJ x are equal to zero when the gas as a whole is at rest. 

Finally, it follows from (70) and (72) that the contribution of the effects of heat conduction and 

diffusion to expression (43) for the rate of entropy appearance is 
 

   
( )

2 ( ) ( )
( )

1 1

ln k ln ln 0
vektor N N

a a
S kj Tk Tjjk

k j

T p D T k T
 

           d d .          (74) 

From the condition that one of the terms can be equal to zero, while the others are not equal to 

zero, it follows that the coefficient of thermal conductivity 0  , and for the coefficients of mul-

ticomponent diffusion, the inequality 

N N

1 1

0kj k j
k j

D
 

  y y                                                            (75) 

for any vectors jy  satisfying the condition 0j
j

y . From the properties of a nonnegative defi-

nite matrix of coefficients kjD , one can indicate the following Sylvester conditions: 0kkD    

non negativity of all elements of the matrix kjD  on the main diagonal kj jk kk jjD D D D ; (each 

minor of a nonnegative definite matrix kjD containing elements of its main diagonal as its own 

main diagonal must also be nonnegative), etc. Within the limits of these limitations, the diffusion 
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coefficients kjD vary in a very wide range of values in accordance with the degree of connection 

between the processes of heat and mass transfer. 
 

4. STEFAN-MAXWELL RELATIONS AND HEAT FLUX  

     FOR MULTICOMPONENT NON-IDEAL MEDIUM 
 

The use of constitutive relations (64) for diffusion fluxes ( , )k tJ x in the general multicompo-

nent case is extremely difficult, since in the literature, with rare exceptions, there is no practical 

information on the generalized coefficients of multicomponent diffusion ( , )kjD tx , and the exist-

ing experimental data refer mainly to diffusion coefficients in binary gas mixtures ( , )kj tx . At 

the same time, the gas-kinetic theory of mixtures gives extremely cumbersome formulas con-

necting the diffusion coefficients ( , )kjD tx with binary coefficients ( , )kj tx for various pairs of 

mixture components. These formulas are usually difficult to use when solving specific problems. 

In addition, the system of diffusion equations obtained after substitution ( )k ,tJ x from (64) into 

balance equations (11) turns out to be unresolved with respect to the higher derivatives. As is 

known, the numerical implementation of such systems is fraught with certain difficulties. There-

fore, when analyzing diffusion processes in multicomponent gas mixtures, a different formula-

tion of the problem is often advantageous, when constitutive relations (64) for diffusion flows  

( )k ,tJ x  are used in a form that is resolved with respect to diffusion thermodynamic forces 

( , )k td x  through flows ( )k ,tJ x . Such an inverse transformation can be written in the form of the 

so-called generalized StefanMaxwell relations, which, instead of generalized coefficients of 

multicomponent diffusion ( , )kjD tx , include molecular diffusion coefficients in binary gas mix-

tures ( , )kj tx . 

Generalized StefanMaxwell relations. For the phenomenological derivation of the Stef-

anMaxwell relations, let us solve equations (61) and (62) with respect to generalized thermody-

namic forces 

0 q
T

T


  X ,    

( )a
i

i i
i

p  


d
X ,   ( 1,2,..., )i N                                 (76) 

through flows ( ),tq x and ( ) (1,2,..., )k ,t NJ x . In relations (61) and (62), only N independent 

equations, since 

1

0
N

k
k

 J ,                                                                      (77) 

0
1

0
N

k
k

  ,    

1

0
N

kj
k

  ,    ( 1,2,...,k N ).                                       (78) 

Therefore, we omit the last equation from system (62) and write relations (61) and (62) in the 

form 
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1

00 0
1

( )
N

q k k N
k





   q ,                                                    (79) 

1

0
1

( )
N

j j q jk k N
k





   J ,    ( 1,2,..., 1j N  ).                           (80)  

 

Solving system (80) with respect to ( )k N  ( 1,2,..., 1j N  ), we find 

1

0 0
1

( ), ( 1,2,..., 1)
N

j N jk k k
k

j N




       J ,                              (81) 

where the elements of the inverse matrix jk satisfy the relations 

1

1

1, ,

0, .

N
ij

ik kj
k

i j

i j





 
     


                                                       (82) 

The symmetry of the coefficients ij implies the symmetry of the coefficients ij : 

= , ( , 1,2,..., 1)ij ji i j N    .                                                 (83) 

From relation (79), using (81), we find  
   

1 1 1 1

0 0 0 0 0 0
1 1 1 1

N N N N

k kj j k kj j
k j j k

   

   

   
          
     

   q J .                    (84)   

Multiplying each of the equations (81) by ic and summing them from 1 to ( 1)N  , we find 

1 1 1 1

0 0
1 1 1 1

,
N N N N

N j jk k k j jk
k j k j

c c
   

   

 
     
 
 

   J                                  (85) 

1 1 1 1

0 0
1 1 1 1

N N N N

i j jk ik k j jk ik k
k j k j

c c
   

   

   
         
   
   

    J ,      ( 1,2,...,i N ).     (86) 

The force can be found from expression (84). Equations (85) and (86) represent the sought inver-

sion of relations (62). 

In order to write these equations in the form of generalized Stefan - Maxwell relations with 

symmetric coefficients, we add to equations (84), (85), and (86) equation (77), respectively mul-

tiplied by the constants 0 , Na a and ( 1,2,..., 1)ia i N  , and determine the free parameters 0a

and ia from symmetry conditions for the coefficients ik ki . For this, it is necessary to put 

1 1

0 0
1 1

,
N N

j jk k
k j

a c
 

 

                                                               (87) 
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1

1

, ( 1,2,..., 1)
N

i N k ki
k

a a c i N




     .                                           (88) 

Then we get 

00 0 0
1

,
N

k k
k

 q J                                                   (89) 

0 0
1

, ( 1,2,..., )
N

i i ik k
k

i N


    J ,                              (90) 

where the coefficients ik are 

1 1

00 00 0 0
1 1

,
N N

k kj j
k j

 

 

                                                      (91) 

1 1

0 0 0 0
1 1

= = ,
N N

N N j jk k
k j

a c
 

 

                                             (92) 

1 1 1

0 0 0 0 0
1 1 1

= ,
N N N

i i k ki k ki j jk
k k j

a c
  

  

 
         
 
 

        ( 1,2,..., 1i N  ),      (93) 

 
1

1

= ,
N

ik ki N j ji jk ik
j

a c




         ( 1,2,..., 1i N  ),              (94) 

1

1

= ,
N

Ni iN N k ki
k

a c




                                                   (95) 

,NN Na                                                                     (96) 

and the identity 

0
1

0.
N

k kc


                                                                   (97) 

Thus, the coefficients ( , 0,1,..., )ik i k N are determined to within a constant  Na , which, gen-

erally speaking, can be chosen arbitrarily. Here we define it, assuming the flows 

( , ) ( 1,2,..., )i t i NJ x are arbitrary. 

Let us rewrite relations (89), (90) in the form 

0
0

00 001

1
,

N
k
k

k

 q J                                                             (98) 

 

0 0 0

00 001

N
i i k

i ik k
k

 
    

 
 

q J ,    ( 1,2,...,i N ).                      (99) 
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Using identity (56), notation (76), and the arbitrariness of vectors  ( , )k tJ x , taking into account 

(97) (99), we obtain 

1

0, ( 1,2,..., )
N

k ki
k

c i N


  .                                                (100) 

Substituting the coefficients (94) and (95) into these relations, we find Na : 

1 1

1 1

N N

N k j kj
k j

a c c
 

 

    .                                                    (101) 

Thus, the constants in (94)-(96) are completely defined in terms of the elements of the symmetric 

matrix of phenomenological coefficients ij and the elements of the symmetric matrix ij in-

verse to it (see (83)). 

Let us now bring expressions (90) to the form of the so-called generalized StefanMaxwell 

relations for multicomponent diffusion. For this we read from (90) the corresponding equality 

(100) multiplied by /i icJ , then we find 

 0 0
1

, ( 1,2,..., )
N

i i k ik k i
k

i N


      w w ,                        (102) 

or in more familiar notation 

 
0( )

1

, ( 1,2,..., )
N

i ia i k
ik k ii

k

T
i N

p p T


  
   d w w .               (103) 

It remains to show that 

0 0
0

1

, ( 1,2,..., )
N

k i
i k ik

k ik

i N


  
     

  
 

 .                             (104) 

Using (92)-(97) and identities (101) for this, we find 
 

1 1
0 0 0 0

1 1 1

( )
N N N

k i k i
k ik k N j ji jk ik

k i k ik k j

c
 

  

       
              

             

    

 
 

1 1 1
0 0

0
1 1 1

N N N
N i

N N k ki k j jk ik
N i k k j

a c c
  

  

    
           

     
    

     

 

 

1 1 1
0

0
1 1 1

N N N
i k

N k ki i j jk ik
i ik k j

c
a c c

c c

  

  

  
        

   
   

       
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1 1

0 0
1 1

N N

k j jk ik i
k j

c
 

 

 
      
 
 

  .                              (105) 

Substituting (104) into (103) and using notation (65) for the thermal diffusion coefficients, 

we finally find 

   ( )

1 1

,
N N

a k i ik k i ik
k j Tk Tii

k k

T
D D

p T p
 

   
    d w w     ( 1,2,..., )i N ,   (106) 

which completely coincides for the case of ideal mixtures with the classical StefanMaxwell re-

lations [6]. 

   2 2
1 1

,
N N

k i k i
i k j Tk Ti

k kik ik

n n n n
lnT D D

n n 

    d w w                      (107) 

if we identify the binary diffusion coefficients ik of the kinetic theory with the expression 

k /ik i k ikT mm n .                                           (108) 

Note that these coefficients are considered independent concentration kx and there is no need to 

calculate them from the properties of molecules. You can use the experimental values measured 

on binary mixtures [7]. 

As noted above, very convenient parameters of thermodiffusion processes are thermal diffu-

sion ratios kTk , which we define here through the phenomenological coefficients 0k  by the 

formula 

0k /Tk k k p  .                                                      (109) 

Then, by virtue of (97), equality (69) holds. In addition, using transformation (105), as well as 

definitions (108) and (109), it is easy to obtain the following system of equations 

 
2

1

k ( )
N

i k
Ti Tk Ti

k ik

n n
D D ,t

n

  x ,     ( 1,2,..., 1i N  ),              (110) 

for finding thermal diffusion ratios  kTi  through binary diffusion coefficients ki and thermal 

diffusion coefficients TiD . Thus, the thermal diffusion ratios kTk introduced earlier by formulas 

(68) and (69) completely coincide with the coefficients (109). 

Finally, using formulas (108) and (110), we rewrite the generalized StefanMaxwell rela-

tions (103) for non ideal mixtures in the following final form: 

  ( )
2

1

k , ( 1,2,..., )
N

ai k
i k Tk k

i ik

n n
lnT k N

n

     v v d ,                        (111) 

where 

( )
( ) 1

2
1

1
( )( )

k N
a k

k k k k ki ik i k a kk
i

d
p

p dt


  
          

 


v
d τ f v v .            (112) 
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This form of the StefanMaxwell relations, intended for finding the rates of relative diffusion, is 

most convenient for solving hydrodynamic problems, since the transfer coefficients ( )ki ,tx and

k ( )Tk ,tx have much simpler expressions for practical calculation than the multicomponent diffu-

sion coefficients ( )ikD ,tx and thermal diffusion coefficients ( )TkD ,tx .

There is an interesting interpretation of the Stefan–Maxwell relation (111) as an equation of 

motion for a separate component of a non ideal mixture (see, for example, "Note I" in the mono-

graph by Chapman and Cowling [1]). In this case, collisions between the molecules of the k-ith 

and i-th components lead to a force acting on each substance and tending to eliminate the relative 

velocity( )i kv v . Substituting (112) into (111), we obtain

 
( )

1

k N
k

k a k k k k ik i k i k
i

d
p n n

dt


        
v

τ f v v

1
2

1

( )( ) k k
N

ki ik i k Ti
i

n T


      v v , (113) 

where k /ki kiT n  , and the parameter ( )ki ,t x  (at least roughly) does not depend on the

proportions of the mixture  [1]; the penultimate term describes the change in the momentum of a 

component k during chemical reactions. 

It should be noted that, in contrast to the analogous equation of motion obtained in the ap-

proximation of equal acceleration (when ( ) / /k
kd dt d dtv v ) by the methods of kinetic theory

in the monograph cited above, system (113) is a system of hydrodynamic equations of a nonideal 

mixture with genuine inertial forces. 

Full heat flux in ideal multi-component environments. From relation (89), taking into ac-

count (109), the expression for the reduced heat flux ( , )tq x follows 

00 0 0
1 1

k
N N

k k Tk k
k k

T p
 

     q J w ,        (114) 

where by the formula 

00 /T         (115) 

the so-called true thermal conductivity coefficient was determined, which is related to the previ-

ously introduced coefficient by the ratio 

1 1 1

k k k k k
N N N

Tk Tk Tk kj Tj
k k j

T D T D
  

          .       (116) 

Indeed, by virtue of (82), (91) and the transformation 0 0
1

N

jk k k
k

    easily deduced using 

formulas (92) and (93), we will have 
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1 1 1 1

00 00 0 0 00 0 0 0
1 1 1 1

N N N N

k kj j k kj N N
j k j k

   

   

               

1 1

0 00 0 0 0 0 00 0 0
1 1 1

N N N

ji i k k N N k k
i k k

 

  


           


   .    (117) 

Hence, when using definitions (65), (109) and (115), expression (116) follows. 

Thus, the total heat flux in multicomponent media can be written as 

1

1 1

k
N N

q Tk k k k k
k k

T p h

 

     J J J (118) 

in full agreement with the kinetic theory of gases [3]. 

Determination of multicomponent diffusion coefficients in terms of binary diffusion 

coefficients. We now obtain algebraic equations that allow calculating multicomponent diffusion 

coefficients through binary diffusion coefficients. It is easy to check that the relation 

 
1;

( ) , ( , 1,2,..., )
N

ji
kj k ij ik i j

k k j

c j i N
 

         .          (119) 

Indeed, by virtue of (65), (66), (94), and (97), we have 

   
1; 1 1

N N N

kj k ij j ik kj k ij j ik j kj ik
k k j k k   

               

1 1 1 1

1 1 1 1

N N N N

j kj ik kN N j l lk ki kj ik
k l k k

c
   


   

    
                

        

   

1

1

( )
N

ji jiki
j k i j
k

c c




 
         
 
 
 . (120) 

When using the notation (66) and (108) for the quantities 2/ik i k ikp m m n  and

/ik i k kiD p    , relations (120) can be rewritten in the form of the following equations

 2
1;

, ( , 1,2,..., )
N

jik i
ji ki i

k k j ik

n n
D D c i j N

n 

     ,                           (121)

suitable for determining the multicomponent diffusion coefficients of a mixture 

( 1,2,..., )ijD i, j N  through binary diffusion coefficients ( , 1,2,..., )ik i k N . Equations (121)

are linearly dependent (since their summation over leads to identity), therefore, one more equa-

tion should be added to them, namely (67(2)). 

Then equations (121) and (67(2)) can be given the following form: 
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2

1 1

( ) ( , 1,2,..., )
N N

jii k i l
jk i

ik ilk l

k i l i

n n n n
D n c i j N

 

 

 
 
     
 
 
 
 

  ,        (122) 

which is very convenient for practical calculations of multicomponent diffusion coefficients 

( )jkD ,tx .

In the particular case of a mixture consisting of three components, equations. (122) allow 

one to find the following expressions for the coefficients of multicomponent diffusion 

 
22 22

1 3 3 23 31 1 2 2 12 23 2 3 12 31
11 2 2

1 23 2 31 3 121

n n m n n mn
D

n n nn

 
    

   
 

,           (123) 

2 2
3 3 23 31 2 1 2 12 23 1 2 3 31 11

12 2
1 32 2 31 3 12

( ) ( )n m m mn
D

n n n

      
 
    

.         (124) 

Expressions for the remaining coefficients can be obtained from (123) and (124) using the ap-

propriate permutation of the indices. 

It should be noted that relations of the type (111), (119), and (121) were first obtained in the 

kinetic theory of gases of monatomic gases in the first approximation of the ChapmanEnskog 

method in the well-known work [21]. Here, their phenomenological conclusion is given, and 

thus the universal character of this kind of relations is established. 

CONCLUSION 

We have already noted that in the literature, when determining the internal energy balance 

equation, they usually proceed from the law of conservation of the total energy of the mixture. 

This is apparently due to the fact that the balance equations for mechanical energy are usually 

derived earlier; and thus, it is possible to derive the equation for the balance of internal energy, 

using only them. In other words, until recently, the literature was limited to mechanical balance 

equations for energy quantities containing only the kinetic energy of the center of mass 21
2
v

and not including the kinetic energy of diffusion. 

At the same time, the balance equations for the total specific kinetic energy of the system 
21

2 k kk
 v can be written directly only when it can be derived from the balance equations 

for the total momentum of the system. However, such a direct conclusion was not known until 

recently. In this work, we managed to overcome this difficulty and, as a result, obtain the correct 

balance equation for the correct value of the local internal energy for multicomponent systems. 

Taking this equation into account, the generalized Stefan – Maxwell relations were thermody-

namically derived, which are, in fact, a system of hydrodynamic equations of a mixture with 

genuine inertial forces. In addition, it was possible to obtain thermodynamically a number of al-

gebraic relations for the transfer coefficients, connecting, in particular, the thermal diffusion rela-

tions with the coefficients of thermal diffusion and multicomponent diffusion, true and partial 
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coefficients of thermal conductivity, multicomponent and binary diffusion coefficients, which 

indicates their universal character. The results obtained are intended for modeling liquid multi-

component non-ideal media, as well as gas-dust mixtures with a finely dispersed dust compo-

nent. 
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