ON A SUM OVER PRIMITIVE SEQUENCES OF FINITE DEGREE

I. LAIB ${ }^{\mathbf{1}}$, N. REZZOUG ${ }^{\mathbf{2 *}}$
${ }^{1}$ ENSTP, GaridiKouba, 16051, Algiers, and Laboratory of Equations with Partial Non Linear Derivatives, ENS Vieux Kouba, Algiers, Algeria.
${ }^{2}$ University of Tiaret, Computer and Mathematics Laboratery and University of Sidi Bel Abbes, Algeria.
*Corresponding author. E-mail: nadir793167115@gmail.com

DOI: 10.20948/mathmontis-2022-53-4
Summary. A sequence of strictly positive integers is said to be primitive if none of its terms divides the others and is said to be homogeneous if the number of prime factors of its terms counted with multiplicity is constant. In this paper, we construct primitive sequences A of degree d, for which the Erdős's analogous conjecture for translated sums is not satisfied.

1 INTRODUCTION

A sequenceA of strictly positive integers is said to be primitive if there is no term of Awhich divides any other. We can see directly that the set of primes $P=\left(p_{n}\right)_{n \geq 1}$ is primitive. We define the degree of an integer, to be the number of prime factors counted with multiplicity and the degree of a sequence A is defined as the maximum degree of its terms. Erdős [1] showed that for any primitive sequence $A \neq\{1\}$, the series $\sum_{a \in A} \frac{1}{a \log a}$ converges. Later, in [2], he conjectured that if $A \neq\{1\}$, is a primitive sequence, then

$$
\sum_{a \in A} \frac{1}{a \log a} \leq \sum_{p \in P} \frac{1}{p \log p}
$$

Based on the primitive sequences A of finite degree, in [3], Zhang proved this conjecture when the degree of Ais at most 4 and in [4], he proved it for the particular case of primitive sequences when the degree of its terms is constant. In [5] the authors simplified the proof of [3] and Laib [6] improved this result up to degree 5. Recently, in [7], the authors studied translated sums of the form:

$$
S(A, x)=\sum_{a \in A} \frac{1}{a(\log a+x)}, \quad x \in \mathbb{R}
$$

and they constructed primitive sequences A of degree 2 , such that $S(A, x)>S(P, x)$ for all $x \geq 81$ and in [8]the authors prove that $S(A, x) \gg S(P, x)$ for x large enough. In this note, we present a general case for any degree d, that is, we prove the following:

Theorem. Let $d \geq 2$ be an integer, $x_{0}=\frac{d d!e^{d+1}}{(d+1)^{d-1}-d!}$ and let k_{0} be the greatest integer such that $p_{k_{0}} \leq e^{e^{d+1}}$. Then for any $k \geq k_{0}$ and any primitive sequence
we have $S\left(B_{d}^{k}, x\right)>S(P, x)$ for $x \geq x_{0}$.

2 MAIN RESULTS

Lemma 2.1. [9] For $x \geq 3275$ there exists a prime number p such that

$$
x<p<x\left(1+\frac{1}{2 \ln ^{2} x}\right) .
$$

Lemma 2.2. For any integer $n>1$, we have

$$
\begin{align*}
& n!\leq n^{n} e^{1-n} \sqrt{n} \tag{1}\\
& 2.5 n^{n} e^{1-n} \sqrt{n}<n!\leq n^{n-1} \tag{2}\\
& n!\leq 2(n+1)^{n-2} \tag{3}\\
& n!<n^{n-2}(n \geq 5) \tag{4}
\end{align*}
$$

Proof. For $n=2$, the inequalities (1) and (2) is verified, for $n>2$, it comes from the inequality [10]

$$
n^{n} e^{-n} \sqrt{2 \pi n} e^{\frac{1}{12 n+1}}<n!<n^{n} e^{-n} \sqrt{2 \pi n} e^{\frac{1}{12 n}}
$$

and we can prove (3) and (4) by induction.
Lemma 2.3. Let $n \geq 2$ be an integer and x be a reel number such that $x \geq n-1$. The function

$$
x \mapsto f_{n}(x)=\frac{n n!e^{x}}{x^{n-1}-n!}
$$

reaches its minimum x_{n} in the interval $] n-1, n+1$], moreover $x_{2}=2, x_{3}=\sqrt{7}+1$, $x_{4} \simeq 4.298$ and $x_{n}<n$ for $n \geq 5$.
Proof. Let $n \geq 2$ be an integer and let f_{n} be the function defined on the interval $\left.I=\right] n-$ $1 ;+\infty[$

$$
f_{n}(x)=\frac{n n!e^{x}}{x^{n-1}-n!}
$$

f is differentiable on I and

$$
f^{\prime}(x)=\frac{n n!e^{x}\left(x^{n-1}-(n-1) x^{n-2}-n!\right)}{\left(x^{n-1}-n!\right)^{2}} .
$$

For $x>n-1$, put $g_{n}(x)=x^{n-1}-(n-1) x^{n-2}-n!$
then

$$
g_{n}^{\prime}(x)=x^{n-1}-(n-1) x^{n-2}>0, x \in I,
$$

hence g_{n} increases on I. On the other hand, since g_{n} is continuous then by lemma 2.2, we have

$$
\begin{aligned}
& \lim _{\mathrm{x} \rightarrow \mathrm{n}-1} g_{n}(x)=-n!<0 \\
& \qquad g_{n}(n)=n^{n-2}-n!>0 \text { for } n \geq 5,
\end{aligned}
$$

$$
g_{n}(n+1)=2(n+1)^{n-2}-n!\geq 0
$$

therefore, there exists only one root $\left.\left.x_{n} \in\right] n-1, n+1\right]$, where for $\left.\left.n \geq 5 x_{n} \in\right] n-1, n\right]$, such that $f^{\prime}{ }_{n}\left(x_{n}\right)=0$. Since $g_{n}(x)<0$ for $x<x_{n}$ and $g_{n}(x)>0$ for $x>x_{n}$ then f_{n} strictly decreases on $\left.] n-1, x_{n}\right]$ and strictly increases on $\left[x_{n},+\infty[\right.$, so we have

$$
\left.\left.f_{n}(x) \geq f_{n}\left(x_{n}\right) \text { where } x_{n} \in\right] n-1, n+1\right] \text {. }
$$

It is clear that, for $n=2,3,4$ the equation $x^{n-1}-(n-1) x^{n-2}-n!=0$ gives $x_{2}=2$, $x_{3}=\sqrt{7}+1$ and $x_{4} \simeq 4.298$. This completes the proof.
Lemma 2.4.For any integer $d \geq 2$, there exists a prime p such that

$$
\begin{equation*}
e^{e^{x_{d}}}<p \leq e^{e^{d+1}} \tag{5}
\end{equation*}
$$

moreover $\max \{p: p \in] e^{e^{x_{d}}}, e^{e^{d+1}}[\}>e^{e^{d}}$, where $\left(x_{d}\right)_{d \geq 2}$ is the sequence defined in lemma 2.3.

Proof. The inequality (5) is easy to verify for $d=2,3,4$. By lemma 2.3, we have, for $d \geq 5$

$$
\begin{equation*}
d-1 \leq x_{d} \leq d \tag{6}
\end{equation*}
$$

therefore $e^{e^{x_{d}}}>3275$, then from lemma 1.1 there exists a prime p such that

$$
e^{e^{x_{d}}}<p \leq e^{e^{x_{d}}}\left(1+\frac{1}{2 e^{2 x_{d}}}\right) .
$$

From (6) we get $4 \leq x_{d} \leq d$, then $1+\frac{1}{2 e^{2 x_{d}}}<2$ and $e^{e^{x_{d}}}<e^{e^{d}}$, thus $\left(1+\frac{1}{2 e^{2 x_{d}}}\right)<$ $2 e^{e^{d}}<e^{e^{d+1}}$. Since $4 e^{e^{d}}<\left(e^{e^{d}}\right)^{2}<e^{e^{d+1}}$, then according to the Bertrand's postulate there exists a prime number in $\left[2 e^{e^{d}}, 4 e^{e^{d}}\right]$, thus, the greatest prime number in $\left[e^{e^{x_{d}}}, e^{e^{d+1}}\right]$ is greater than $e^{e^{d}}$. Which finishes the proof.
Lemma 2.5. [7] For any integer $k \geq 1$ and any integer $d \geq 2$, we define

$$
A_{d}^{k}=\left\{p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots p_{k}{ }^{\alpha_{k}}, \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}, \alpha_{1}+\cdots+\alpha_{k}=d\right\}
$$

then we have the disjoint union

$$
A_{d}^{k+1}=A_{d}^{k} \cup\left\{a p_{k+1}: a \in A_{d-1}^{k+1}\right\} .
$$

Lemma 2.6. [11] For any real number $x>1$, we have

$$
\sum_{p \in P, p \leq x} \frac{1}{p}>\log \log x .
$$

Lemma 2.7. Let $d \geq 2$ and let k^{\prime} be the integer such that $p_{k^{\prime}} \geq \exp \exp (d)$. For any real number $x>0$ the sequence $\left(S\left(A_{d}^{k}, x\right)\right)_{k \geq k l}$ strictly increases.
Proof. For any integer $k \geq 1$ and any integer $d \geq 2$, the multinomial formula ensures that

$$
\begin{aligned}
\sum_{a \in A_{d}^{k}} \frac{1}{a} & =\sum_{\alpha_{1}+\cdots+\alpha_{k}=d} \frac{1}{p_{1}^{\alpha_{1}} p_{2} \alpha_{2} \ldots p_{k}^{\alpha_{k}}} \\
& \geq \sum_{\alpha_{1}+\cdots+\alpha_{k}=d} \frac{\left(1 / p_{1}\right)^{\alpha_{1}}}{\alpha_{1}!} \ldots \frac{\left(1 / p_{k}\right)^{\alpha_{k}}}{\alpha_{k}!} \\
& =\frac{1}{d!}\left(\sum_{n=1}^{k} \frac{1}{p_{n}}\right)^{d}
\end{aligned}
$$

therefore

$$
\begin{equation*}
\sum_{a \in A_{d}^{k}} \frac{1}{a} \geq \frac{1}{d!}\left(\sum_{n=1}^{k} \frac{1}{p_{n}}\right)^{d} \tag{7}
\end{equation*}
$$

Put $A_{d}^{k}=\left\{p_{n} / p_{n} \in P, n>k\right\}$, then from lemma 2.5 we have

$$
B_{d}^{k+1}=A_{d}^{k+1} \cup A^{k+1}=A_{d}^{k} \cup\left\{a p_{k+1}: a \in A_{d-1}^{k+1}\right\} \cup A^{k+1}
$$

so,

$$
S\left(B_{d}^{k+1}, x\right)=S\left(B_{d}^{k}, x\right)+E
$$

where

$$
E=\frac{1}{p_{k+1}}\left(S\left(A_{d-1}^{k+1}, \log p_{k+1}+x\right)-\frac{1}{\log p_{k+1}+x}\right) .
$$

Since p_{k+1}^{d-1} is the greatest element of A_{d-1}^{k+1}, we have

$$
\begin{aligned}
S\left(A_{d-1}^{k+1}, \log p_{k+1}+x\right) & =\sum_{a \in A_{d-1}^{k+1}} \frac{1}{a\left(\log a+\log p_{k+1}+x\right)} \\
& \geq \sum_{a \in A_{d-1}^{k+1}} \frac{1}{a\left((d-1) \log p_{k+1}+\log p_{k+1}+x\right)} \\
& \geq \frac{1}{d \log p_{k+1}+x} \sum_{a \in A_{d-1}^{k+1}} \frac{1}{a}
\end{aligned}
$$

and by lemma 2.6 we obtain

$$
\begin{aligned}
& \sum_{a \in A_{d-1}^{k+1}} \frac{1}{a} \geq \frac{1}{(d-1)!}\left(\sum_{n=1}^{k+1} \frac{1}{p_{n}}\right)^{d-1} \\
& \geq \frac{1}{(d-1)!}\left(\log \log p_{k+1}\right)^{d-1}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{d^{d-1}}{(d-1)!} \\
& \geq \frac{d^{d-1}}{d!} d \text { for } k \geq k^{\prime}
\end{aligned}
$$

and according to lemma 2.2 we have $d!\leq d^{d-1}$, then

$$
\sum_{a \in A_{d-1}^{k+1}} \frac{1}{a} \geq d \text { for } k \geq k^{\prime}
$$

which implies

$$
\begin{gathered}
S\left(A_{d-1}^{k+1}, \log p_{k+1}+x\right)-\frac{1}{\log p_{k+1}+x}>\frac{1}{\operatorname{dog} p_{k+1}+x}-\frac{1}{\log p_{k+1}+x} \\
=\frac{d x-x}{\left(d \log p_{k+1}+x\right)\left(\log p_{k+1}+x\right)}>0
\end{gathered}
$$

thus $S\left(B_{d}^{k+1}, x\right)-S\left(B_{d}^{k}, x\right)>0$. Which ends the proof.

Proof of theorem.

From [7], for any integer $k \geq 1$ and any integer $d \geq 2$, we have

$$
\begin{aligned}
\sum_{a \in B_{d}^{k}} \frac{1}{a(\log a+x)} & =\sum_{a \in A_{d}^{k} \cup A^{k}} \frac{1}{a(\log a+x)}=\sum_{a \in A_{d}^{k}} \frac{1}{a(\log a+x)}+\sum_{a \in A^{k}} \frac{1}{a(\log a+x)} \\
& \geq \frac{1}{d \log p_{k}+x} \sum_{a \in A_{d}^{k}} \frac{1}{a}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} .
\end{aligned}
$$

Using (7) and lemma 2.6, we get

$$
\sum_{a \in A_{d}^{k}} \frac{1}{a}>\frac{\left(\log \log p_{k}\right)^{d-1}}{d!} \sum_{n=1}^{k} \frac{1}{p_{n}}
$$

therefore

$$
\begin{aligned}
& \sum_{a \in B_{d}^{k}} \frac{1}{a(\log a+x)} \geq \frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)} \sum_{n=1}^{k} \frac{1}{x p_{n}}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \\
& \quad \geq \frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)} \sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} .
\end{aligned}
$$

To obtain the inequality required in theorem, we must choose k and x so that

$$
\begin{equation*}
\frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)}>1 \tag{8}
\end{equation*}
$$

Since the function

$$
x \mapsto h_{k, d}(x)=\frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)} \text { for } d \geq 2, k>1
$$

strictly increases for $x>0$, let x_{0} the smallest value for which the inequality (8) is verified. That is

$$
\begin{equation*}
\frac{\left(\log \log p_{k}\right)^{d-1}-d!}{d d!\log p_{k}}>\frac{1}{x_{0}} . \tag{9}
\end{equation*}
$$

Since $x_{0}>0$, we need to find k such that $\left(\log \log p_{k}\right)^{d-1}-d!>0$, then by lemma 2.2 , we just take $\log \log p_{k}>d$, and if we put $\log \log p_{k}=z$, then (9) becomes

$$
\frac{d d!e^{z}}{z^{d-1}-d!}<x_{0}
$$

Now, we must choose z so that the number $\frac{d d!e^{z}}{z^{d-1}-d!}$ is the smallest possible. According to lemma 2.3, the function

$$
x \mapsto f_{d}(x)=\frac{d d!e^{z}}{z^{d-1}-d!}
$$

reaches its minimum x_{d} in

$$
] d-1, d+1]
$$

then we can take $z \in] x_{d}, d+1\left[\right.$ and $x_{0}=\frac{d d!e^{d+1}}{(d+1)^{d-1}-d!}$, from lemma 2.4 , there exists a prime integer p_{k} such that

$$
x_{d}<\log \log p_{k}<d+1
$$

Choose $\left.\left.p_{k_{0}}=\max \left\{p_{k}: \log \log p_{k} \in\right] x_{d}, d+1\right]\right\}$ and $z=\log \log p_{k_{0}}$, then we obtain $S\left(B_{d}^{k_{0}}, x\right)>S(P, x)$ for $x \geq x_{0}$. Finally, by lemma 2.4, we have $e^{e^{d}} \leq p_{k_{0}} \leq e^{e^{d+1}}$ and from lemma 2.7, we get for $k \geq k_{0}, x \geq x_{0}$,

$$
S\left(B_{d}^{k_{0}}, x\right)>S(P, x)
$$

And the proof is achieved.

3 CONCLUSIONS

In this work, we obtain a generalization of result introduced in [7], concerning primitive sequences of finite degree, thus, if we take $d=2$ in the theorem we get $S\left(B_{2}^{k}, x\right)>$ $S\left(B_{1}^{k}, x\right)$, for $k \geq 27775592$ and $x \geq 81$, which apply to improve the results of [3,6]. Since for x is sufficiently large, we have $S\left(B_{d}^{k}, x\right)>S(P, x)$, so we can ask if it is true: for any $d \geq 1$ there exists k_{0} such that $S\left(B_{d+1}^{k}, x\right)>S\left(B_{d}^{k}, x\right), k \geq k_{0}, x>0$.
Acknowledgements: The Authors would like to thank the reviewers for their comments that helped us to improve this article.

REFERENCES

[1] P. Erdős, "Note on sequences of integers no one of which is divisible by any other", J. Lond. Math. Soc, 10, 126-128 (1935).
[2] P. Erdős \& Z. Zhang, "Upper bound of $\sum 1 / a_{i} \log a_{i}$ for primitive sequences", Math. Soc, 117, 891-895 (1993).
[3] Z. Zhang, "On a conjecture of Erdős on the sum $\sum 1 /(\mathrm{plog} \mathrm{p})$ ", J. Number Theory, 39, 14-17 (1991).
[4] Z. Zhang, "On a problem of Erdős concerning primitive sequences", Math. Comput., $\mathbf{6 0}(202)$, 827-34 (1993).
[5] I. Laib, A. Derbal, R. Mechik and N. Rezzoug, "Note on a theorem of Zehnxiag Zhang", Math. Montis., 50, 44-50 (2021).
[6] I. Laib, "The degree of primitive sequences and Erdős conjecture", Math. Montis., 52, 37-42 (2021).
[7] I. Laib A. Derbal et R. Machik, "Somme translatée sur des suites primitives et la conjecture d’Erdős C. R. Acad. Sci. Paris, Ser.I 357 p. 413-417 (2019).
[8] N. Rezzoug. I. Laib , \& K. Guenda, "On a translated sum over primitive sequences related to a conjecture of Erdős", NNTDM, 26 (4), 68-73 (2020).
[9] P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Thèse de doctorat, université de Limoges, 17 (1998).
[10] H. Robbins, "A remark on Stirling's formula", Amer. Math. Monthly, 62, 26-29 (1955).
[11] J. -P. Massias \& G. Robin, "Bornes effectives pour certaines fonctions concernant les nombres premiers", J. Théorie. Nombres Bordeaux, 8, 215-242 (1996).

Received, February 8, 2022

