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Summary. A logical scheme for constructing thermodynamics of anomalous stochastic systems 

based on the nonextensive two-parameter (κ, ς) -entropy of Sharma–Taneja–Mittal (SHTM) is 

considered. Thermodynamics  within the framework (2 - q) -statistics of Tsallis was  constructed, 

which belongs to the STM family of statistics. The approach of linear nonequilibrium thermody-

namics to the construction of a family of nonlinear equations  of Fokker−Planck−Kolmogorov 

(FPK), is used, correlated with the entropy of the STM, in which the stationary solution of the 

diffusion equation coincides with the corresponding generalized Gibbs distribution obtained 

from the extremality (κ, ς) - entropy condition of a non-additive stochastic system. Taking into 

account the convexity property of the Bregman divergence, it was shown that the principle of 

maximum equilibrium entropy is valid for (κ, ς) - systems, and also was proved the H - theorem 

determining the direction of the time evolution of the non-equilibrium state of the system. This 

result is extended also to non-equilibrium systems that evolve to a stationary state in accordance 

with the nonlinear FPK equation. The method of the ansatz- approach for solving non-stationary 

FPK equations is considered, which allows us to find the time dependence of the probability 

density distribution function for non-equilibrium anomalous systems. Received diffusive equa-

tions FPК can be used, in particular, at the analysis of diffusion of every possible epidemics and 

pandemics. The obtained diffusion equations of the FPK can be used, in particular, in the analy-

sis of the spread of various epidemics and pandemics. 

1  INTRODUCTION 

As it has now become clear, the statistical mechanics of Boltzmann−Gibbs−Shannon and 

standard thermodynamics are not completely universal theories, since they have limited areas of 

applicability. In physics and information theory, as well as in other natural sciences that use sta-

tistical methods, numerous examples of complex (anomalous) systems are known, which are 

characterized by the effects of long-range interaction, the fractal nature of the phase space, non-

Markov random processes, and nonlocal correlations between individual elements of the aggre-

gate system. The complex space-time structure of these systems leads to a violation of the prin-

ciple of additivity for such important thermodynamic quantities as entropy or internal energy. 

Research in the field of statistical mechanics and thermodynamics of non-additive systems has 

recently become a subject of considerable interest, which is explained both by the novelty of the 

general theoretical problems arising here and by the importance of practical applications. 

The beginning of a systematic study in this direction is associated with the work of K. Tsallis 
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[1-3], in which a one-parameter entropy functional was introduced, which depends on the so-

called deformation parameter and is nonadditive for a set of independent systems. Numerous re-

views of new results obtained in the study of anomalous physical phenomena in the framework 

of Tsallis statistics are available in the scientific literature (see, for example, [4]). 

At the same time, the definition of the one-parameter Tsallis entropy is not the only example 

of deformed entropy [5-6]. Numerous non-logarithmic entropies, in particular, the one-parameter 

Renyi entropy [7], the two-parameter Sharma−Mittal entropy [8-10], the one-parameter entropy 

entropy of Kaniadakis [11-16], two-parameter entropy Sharma−Taneja−Mittal [17-19], etc. The 

range of applications of various parametric entropies is currently constantly expanding, covering 

various areas in science, such as cosmology and cosmogony, plasma theory and quantum me-

chanics, special and general relativity, stochastic dynamics and fractals, geophysics, biomedicine 

and many others. 

Unfortunately, generalized thermodynamics based on some nonextensive statistics are intend-

ed mainly to describe the equilibrium states of physical systems, and are not quite applicable to 

the description of their nonequilibrium states [20]. At the same time, one of the basic phenome-

nological equations of statistical mechanics, describing, in particular, the dynamic evolution of a 

nonequilibrium system, is the nonlinear diffusion Fokker–Planck–Kolmogorov equation. Recent-

ly, an effective approach has been developed that allows one to construct nonlinear FPK equa-

tions in such a way that their stationary solutions are consistent with the corresponding equilibri-

um (canonical) probability density distributions obtained from the condition of extremality of 

entropies for the systems under consideration [21-23]. 

This approach, which links the entropy of a system with nonlinear FPK equations describing 

the evolution of nonequilibrium phenomena, is one of the useful applications of nonextensive 

statistical mechanics. The use of diffusion equations correlated with the entropy method allows 

one to find the time dependence of the probability density distribution function for 

nonequilibrium nonextensive systems. 

Power-law FPK equations have found application in various fields of science, such as astro-

physics, plasma physics, hydrodynamics, biophysics, etc. (see, for example, [5, 24-29]). In addi-

tion, they were used to simulate energy propagation in highly nonlinear disordered lattices [30]. 

Nonlinear diffusion and FPK equations are also closely related to nonlinear versions of the 

Schrödinger, Dirac, and Klein–Gordon equations [31], which admit complex soliton-like analyti-

cal solutions, as well as to nonlinear wave equations having exponential plane wave solutions 

modulated by q- Gaussians [32]. Nonlinear diffusion processes are also important when studying 

the distribution of biological populations  [33,34]. In particular, the nonlinear diffusion equations 

of FPK based on kappa statistics can be used in epidemiology to predict the spread of epidemics 

and pandemics. 

It should be noted that despite the wide variety of studies in these scientific areas, they all 

have much in common due to the cooperative interaction between the individual subsystems of 

the considered aggregate system. These interactions lead to a decrease in a large number of de-

grees of freedom of many-body systems and, thus, allow a low-dimensional description in terms 

of the nonlinear nonstationary Fokker–Planck–Kolmogorov equation, which reveals the dynam-

ics underlying many observed physical phenomena. 

This paper shows how the approach of linear nonequilibrium thermodynamics to the construc-

tion of FPK equations can be applied to a relatively large category of entropies, which are special 

cases of the two-parameter Sharma−Taneja−Mittal entropy. 
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2 SOME DEFINITIONS AND STATISTICAL PROPERTIES OF ENTROPY  

HARMA-TANEDJA-MITTAL 

In two-parameter statistical mechanics of STM for continuous characteristics of anomalous 

( , )  -systems with probabilistic normalization 

( ) 1p d  r ,      (0 ( )p  r )                                                    (1) 

for the probability density of the state ( ) ( )p pr rSTM of the system in the phase space 

 1 1: ,... ; ,...n nr x x v v of the Gibbs physical statistical ensemble (describing the dynamics of the 

microstate of a chaotic system), the dimensionless ( , )  -information entropy is given by the fol-

lowing functional [18, 35] 

1
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( ) : ( )
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p p
S p p d

 


 


  




r r
r .                                              (2) 

 

Here the region of integration coincides with the entire 6n -dimensional phase space, and the 

dimensionless element dof the phase space is written in the modern form  
1

3: ! nnd h d


  r , 

where 2h    is Planck's constant; entropy indices  and    (deformation parameters) are real 

numbers satisfying inequalities 1   and 0  . 

Entropy (2) can also be rewritten in the following equivalent forms: 
 

{ , } { , } { , }( ) : ( ) ln ( ) ln ( )S p p p d p                r r r .                              (3) 

 

When writing (3), the so-called "deformed" logarithm Sharma−Mittal was used [8] 
 

{ , }ln ( ) :
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x x
x

 

 





,    ( 0x  ),                                                      (4) 

 

as well as the following method for obtaining the average value for any physical quantity ( )k rT , 

characterizing the microstate of the system, namely 
 

[ ] ( ) : ( ) ( )k kp d    E r r rT] T T .                                                 (5) 

 

Due to the deformed logarithm in the expression for the entropy, the STM statistics describe 

events that are practically unattainable in simple systems characterized by the Boltzmann–Gibbs 

statistics. 

Two-parameter entropy (2) combines the statistics of Boltzmann−Gibbs, Tsallis, Kanyadakis, 

and some others and, by manipulating two deformation parameters   and  , defines them as 

some limiting one-parameter cases of one family (see, for example, [10,19, 36]). 
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If (1 ) / 2q      , then definition (2) implies the Tsallis (2 q )-entropy 

2

{ , } 2
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q

q

p p
S p S d
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r r
 [3]; at 0   is the Kaniadakis entropy 
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( ) ( )
:
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S d

 




 




r r
 [12-14], and at 

21 1 0      , 1Aq      is the Abe 

entropy [37]. On the basis of these entropies, in particular, the corresponding statistical 

thermodynamics are constructed [19,36]. In the weak-coupling limit, when 0  and 0 , 

the entropy ,S  goes over into the classical formula : ( ) ( )S p p d   r r
BG

of Gibbs statistics; 

indeed, for 0   we have
ln

e
p

p
   

  1 ln p  : and, therefore, 

{ 0, 0}
0
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Equilibrium probability distribution. The modified equilibrium Gibbs distribution in the 

STM statistics can be obtained by maximizing the ( , )  -entropy (3) under the following addi-

tional conditions: given the total energy of the system 

{ , } { , }: ( ) ( )p d        r rE                                                      (6) 

and preserving the probabilistic normalization (1) of the distribution ( )p r . Here ( ) r is the inter-

nal energy of the system in the state r , which is determined by the mathematical model of the 

studied physical processes. 

 Using the Jaynes [38] methodology, standard in information theory and statistical mechanics, 

to obtain the extreme distribution from the variational principle, we introduce the functional 

      { , }( ) : ( ) ln ( ) ( ) ( ) ( )p p p d p d p d            r r r r rL                                (7) 

and find its unconditional extremum. This  ,  is the essence of the Lagrange multipliers;  − 

"chemical potential". In accordance with Lagrange's theorem, the probability distribution ( )eqp r

"maximizing" the entropy { , }( )S p   under the indicated constraints is determined from the condi-

tion: 

{ , } { , }

( )
(1 )ln ( ) ( ) ( ) 0

p
p u p

p    


                  

r r r
L

.                        (8) 

This implies 

{ , }

( )
ln ( )

eqp
 

 
         

 

r
r ,                                               (9) 

where 
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2 2

2
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: , :
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,                                     (10) 

moreover,   

,exp ( 1 / )     ,    (1 )        .                                 (10
*
) 

Expression (9) can be written in the form of the following generalized Gibbs distribution in 

statistics (GMD) 

{ , }( , ) exp ( )eqp  

 
         

r r ,                                        (11) 

which in the limit , 0   reduces to the microcanonical Gibbs distribution of classical statis-

tics [39]. 

In relations (8), (9), and (11), the following functions important in the statistical mechanics of 

STM appear: 

[1]  Function conjugate to the deformed logarithm (4) [18, 40] 

 { , }( ) : , ( , )
2

x x
u x x

 


 


   R .                                               (12) 

[2]  The Kanyadakis exponent { , }exp ( )x  , which is the inverse of the ( , )  -logarithm 

{ , } { , } { , } { , }ln exp ( ) exp ln ( )x x x       
    
   

.                                     (13) 

Here are some useful properties of the generalized functions introduced above, which will be 

used below: 

{ , } { , } { , } { , } { , }ln ( ) ( )ln ( ) ( )ln ( )xy u x y u y x           ,                           (14) 
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2
{ , } { , } { , } { , }( ) (1 ) ( ) ln ( )

d x
xu x u x x u

dx        

 
             

.              (20) 

Equilibrium thermodynamics can be constructed on the basis of nonextensive ( ,  )- entropy 

and taking into account the equilibrium distribution (11) [19,41]. Let's consider some of the ele-

ments of this thermodynamics. 

Statistical thermodynamics relations for ( ,  )-systems. Using the equilibrium distribution 

(11), it is easy to obtain the expression: 

{ , } { , }(1 )ln ( ) ( ) ( ) 0eq eqp u p   
              

r r r ,                          (21) 

averaging which with the help of the distribution ( )estp r we obtain the extreme value of the 

( , )   -entropy 

 { , } { , } { , }

1

1

eq eq eqS      
   
   
I E =.                                     (22) 

Further, in those cases when this does not cause ambiguity, the index of the thermodynamic pa-

rameters will be omitted. 

The function ,
eq
 I , that plays an important role in the Sharma−Taneja−Mittal statistics is giv-

en by the expression 

         { , } { , } { , } { , }( ) : ( ) (1 ) ln ( ) ln /eq eq eq eq eqp p u p d p p                I  

{ , } { , }(1 ) ( )eq eqS        E .                                                         (23) 

Further, in those cases when this does not cause ambiguity, the index of the thermodynamic 

parameters will be omitted. 

Differentiating expression (3) for { , }S   with respect to internal energy { , } E , taking into ac-

count (11) and (17), as a result, we obtain 
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E E

.                        (24) 

When using (1) and (6), this equality is reduced to a generalization of the definition of inverse 

temperature:  

1
{ , } { , }/ :dS d T     E .                                            (25) 
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It is important to keep in mind that the STM entropy and the corresponding statistical 

mechanics preserve a number of properties of the classical Boltzmann–Gibbs theory [39]. In 

particular, the Legendrian structure of thermostatics was investigated in the works cited above by 

introducing several thermodynamic potentials. It was found that introduced by the relation 

 { , } { , } { , } { , }
1

( ) : exp ( )
1       

 
       

Z I E =                     (26) 

analogue of classical partition function, satisfies the Legendre relation 

{ , } { , } { , }ln (Z )
d

d       


E .                                             (27) 

In this case, the ( , )  -entropy and the generalized statistical sum are related by the relation 

{ , } { , } { , } { , }ln ( )S         Z E .                                           (28) 

A combination of expressions (22) and (26) leads to the basic thermodynamic identity 

 { , } { , } { , } { , } { , } { , }ln ( )S                Z E E F ,                        (29) 

where free energy is defined by the equality 

1
{ , } { , } { , }( ) : ln ( )p 
       ZF .                                             (30) 

Thus, the ( ,  ) -free energy satisfies the Legendre structural transformations generalized by the 

following relations [19] 

{ , }
{ , } { , }

( )
( ) ( )

S p
p p

 
    


F E ,    , ,( )

d

d     


F E  .                         (31) 

3   BREGMAN'S DIVERGENCE. GENERALIZED H-THEOREM 

Let us now show that during a spontaneous transition between an arbitrary state of a system 

with a distribution ( , )p tr  and an equilibrium state with a distribution ( )eqp r , the entropy of the 

system can only decrease, i.e. { } { }[ ( )] [ ( , )]eqS p S p t r r . 

To this end, we introduce into consideration the so-called Bregman divergence [42,43] 

{ , }
{ , } { , } { , }

( )
[ : ] ( ) ( ) ( ) 0

S p
u p S p S u u p d

p

 
     


     


B  ,             (32) 

which belongs to the most significant statistical characteristics of a nonextensive dynamic ( , )   

-system [44]. As a functional, it determines the measure of statistical ordering in the microstates 

of a system with a distribution ( )p r  relative to a state with a distribution ( )u r . Expression (32) is 

a functional for two normalized distributions ( , ) ( , ) 1p t d u t d    r r . 

Various properties of the general form of Bregman divergence can be found in [43]. Here we 
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note that the quantity { , }[ : ]u p B  is a real, positive, convex (in the first argument) functional. In 

addition, since for ( ) ( )p ur r  equality { , }[ : ] 0p p  B  holds, the Bregman divergence is a 

Lyapunov function
 i)

. 

Taking into account property (16) for the deformed logarithm { , }ln   , expression (32) can be 

given the following form: 

{ , } { , } { , } { , }[ : ] ( ) ( ) ( )ln ( / ) 0u p S p S u u p p d             B .                     (33) 

Now let the distribution ( )u r  be equilibrium, for which the expression is valid: 

{ , }ln [ ( ) / ] [ ( ) ] ( )eqp z       r r r ,                                     (34) 

and the distribution ( , )p p t r characterizes an arbitrary (but close to equilibrium) state of the 

system. In addition, suppose that for both distributions the equality holds (the so-called Gibbs 

condition) 

( , ) ( ) ( ) ( )eqp t z d p z d   r r r r .                                       (35) 

Let us show that in this case the equality 

{ , } { , }( 1) ( ) ln ( ) ( )eq eq eqp p p d p p u p d           .                   (36) 

Indeed, combining (11) and (16), we find the equality 

{ , } { , }(1 ) ln ( ) ( )eq eqp u p z        r ,                                       (37) 

using which together with (35), we obtain (36). 

On the other hand, when using definition (34) and formulas (1) and (6) (with replacement 

p u ), we get the expression: 

{ , } { , } { , }( ) : ln ( ) [ : ]eqS p p p d p p          B  

{ , } { , }ln ( ) ( ) ln ( / )eq eq eq eqp p d p p p         ,                           (38) 

which, taking into account formula (16), takes the form: 

{ , } { , } { , }( ) [ : ] ln ( )eq eq eqS p p p p p d         B  

{ , } { , }( ) ( ) (1 ) ( ) ln ( )eq eq eq eqp p u p d p p p           .                     (39) 

Finally, from (36) and (39) the desired result follows [44] 

                                                 
i) Recall that the Lyapunov function is a function of a definite sign that vanishes at the equilibrium 

point of the system. An equilibrium state is an attractor when the time derivative of the Lyapunov 

function has a sign opposite to that of the function itself. 
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{ , } { , } { , } { , }[ ( , )] [ ( )] [ : ] [ ( )]eq eq eqS p t S p p p S p         r r rB .                   (40) 

Here the Bregman divergence appears as a negative contribution to the Sharma−Taneja−Mittal 

entropy and manifests itself as negentropy [45]. It follows from (40) that an increase in the en-

tropy of the system up to its maximum value in equilibrium occurs together with the loss of 

idiscrimination information, that is, there is a joint increase in statistical disorder and a decrease 

in the statistical ordering of microstates of a nonextensive system. 

Gibbs' theorem and H-theorem. Since, according to the convexity property [43] the 

Bregman divergence { , }[ : ]eqp p B  is a sign-definite Lyapunov function, in order for the state of 

complete equilibrium  ( )eqp r  to be stable, the following inequality must be satisfied 

  { , } { , } { , }[ : ] [ ( , )] [ ( )] 0eq eqd d
p p S p t S p

dt dt        r rB .                        (41) 

Thus, as the system tends to an equilibrium state in time evolution, the magnitude of the 

Bregman divergence decreases. Moreover, from (41) follows the H-theorem for open 

nonequilibrium nonextensive ( , )  -systems 

{ , }[ ( , )] 0
d
S p t

dt   r ,                                                       (42) 

which is valid when approaching the state of complete statistical equilibrium. This theorem 

states that the Sharma−Taneja−Mittal entropy of the system continuously increases in the 

direction of equilibrium, where it reaches a final value and becomes maximum. It is in this way 

that a spontaneous transition from an arbitrary nonequilibrium state to an equilibrium state 

occurs, at which the degree of disorder of the ( ,  ) -system increases and at equilibrium reaches 

its maximum value. 

4 RELATIONSHIP OF THE FOKKER−PLANK−KOLMOGOROV EQUATION 

ENTROPY SYSTEM 

Anomalous diffusion phenomena are very common in nature and can be adequately described 

using the nonlinear Fokker−Planck−Kolmogorov equations, which have found wide application 

in various natural scientific fields, such as astrophysics, plasma physics, quantum mechanics, 

general and special theories of relativity, nonlinear hydrodynamics, biophysics, etc. The 

phenomena considered in them have a common physical mechanism arising due to the 

cooperative interaction between individual subsystems of the overall system. Cooperative 

interactions lead to a decrease in a large number of degrees of freedom of systems of many 

bodies and, thereby, connect individual subsystems through the process of self-organization into 

synergistic objects. Such synergistic systems allow low-dimensional descriptions in terms of 

nonlinear FPK equations, which are characterized by specific types of nonlinear diffusion 

contributions.  

Such contributions can be associated, in particular, with non-extensive statistical mechanics. 

In the scientific literature, situations where diffusion contributions are written as a degree of 

probability density have been studied in most detail (see, for example, [21,24, 46-54]). 

82



A.V. Kolesnichenko 

 

Recently, the method of constructing the FPK equation for any nonextensive physical system, 

associated with the local production of its entropy, has become widespread. This method was 

developed on the basis of linear nonequilibrium thermodynamics by T. Frank [22,55] and its 

content is detailed in the monograph [23].  

The essence of this method is as follows: The starting point is the local continuity equation for 

the probability density ( , )p tr in the phase space 

( , ) ( , ) 0p t t
t


 


rr J r ,                                                 (43) 

which takes place both in physical space q and in the vector space of velocities v . In this case, 

the nonlinear flow of probability is given by the relation 

( )
( , ) : ( , )

p
t p t

p

 
    

 
rJ r r

F
.                                         (44) 

where the quantity  ( ) /p p  r F  is the thermodynamic force and ( )pF is the free energy for 

the problem under consideration [23]. 

Further, when constructing the FPK equation on the basis of the STM entropy functional, for 

simplicity, we restrict ourselves to considering the classical stochastic Markov process in the 

velocity spacev , which is described by the distribution function ( , )p tv , information entropy 

{ , }( )S p  and average energy { , }( )p E . Then the functional is given by the expression [23] 

{ , } { , } { , }( ) : ( ) ( )p p DS p      F E ,                                        (45) 

in which  

{ , } { , }( ) ( ) ( )p p d     v v vE ,   { , } { , } { , } { , }( ) ( )ln [ ( )]S p p p d         v v v ,       (46) 

{ , }( , )D D t  v  − diffusion coefficient (or noise intensity coefficient), which plays the role of 

temperature in the velocity space (in the general case 1/D   ); 
2

2
( ) m v v − kinetic energy of 

a particle (hereinafter we will assume that 1m  ). 

Taking into account formula (17), when calculating the variational derivative ( ) /p p F , we 

obtain: 

{ , }

( )
( ) ( ) ln

p
p D

p  

   
        

v
vF .                                          (47) 

Accordingly, for the flow of probability, taking into account formula (19), we will have 

{ , }

( )
( , ) ( , )

p
t p t

p 

 
    

 
vJ v v

F
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{ , } { , }

( , )
( , ) ( ) ( , ) ln

p t
p t D p t   

  
         

  
v v

v
v v v                          (48) 

   , { , } { , } { , }( ) ( , ) ( , ) ( , ) ( , ) ln ( , )F p t D p t u p t D p t p t                 v vv v v v v v , 

and when using relation 1      and definition (4) for the function ,ln ( )x  , we obtain 

a different representation of the probability flow 

{ , } { , } { , }

( , )
( , ) ( ) ( , ) ( , ) ln

p t
t F p t D p t     

  
      

  
v

v
J v v v v  

( ) ( )

{ , }( ) ( , ) ( , ) ( , ) ( , )
2 2

F p t D p t p t p t
  

 
 

   
     

     
vv v v v v  

 

{ , }

1 1
( ) ( , ) ( , ) ( , ) ( , )

2 2
F p t D p t p t p t 

 

        
     

   
vv v v v v .            (49) 

Here ( ) ( )F     vv v v  is the linear drift coefficient. Thus, the nonlinear power-law FPK 

equation in the SHTM kinetics has the form: 

( , )
( ) ( , )

p t
F p t

t


    

v

v
v v  

{ , }

1 1
( ) ( , ) ( , ) ( , )

2 2
D t p t p t p t 

 

   
     

   
v vv v v .        (50) 

Here and below, for simplicity, we will assume that the diffusion coefficient { , }D   depends only 

on time. 

If a parameter 0  , then from (48) and (19) it follows 

{ } { } { } { } { }( , ) ( ) ( , ) ( ) ( , ) ( , )t F p t D t p t u t    
    
 vJ v v v v v ,                        (51)  

and, accordingly, the FPK equation in the Kanyadakis statistics takes the form: 

1 1
2

{ }

( , ) ( , )
( , ) ( ) ( , ) ( )

2

p t p t
p t F p t D t
t

 



 
          

v v

v v
v v v .               (52) 

If the parameters ,  and q  are related by the relation (1 ) / 2q      , then definition 

(48) implies the following expression for the probability flow 

2
{2 }( , ) ( ) ( , ) ( ) ( , ) q

q qt F p t D t p t 


   
 vJ v v v v  .                          (53) 
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Then for the FPK equation in the ( 2 q ) -formalism of the Tsallis statistics we obtain 

22
{2 }( , ) ( ) ( , ) ( ) ( , ) q
qp t F p t D t p t

t




         
v vv v v v .                   (54) 

If 1q  , then equation (53) describes the Ornstein−Uhlenbeck processes [56].  

5  ELEMENTS OF (2 - q) - TSALLIS FORMALISM 

Next, we will consider methods for finding solutions to the obtained nonstationary Fokker− 

Planck−Kolmogorov equations using the example of the one-dimensional power equation (54) 

valid in the Tsallis ( 2 q ) -formalism. For this purpose, let us recall some elements of this for-

malism obtained in the framework of the statistical mechanics of the STM. First of all, we find 

the deformed equilibrium Gibbs distribution in the ( 2 q )-statistics. If (1 ) / 2q      , then 

the definition (2) of entropy { , }S   implies the following expression for the Tsallis ( 2 q ) –

entropy 

2

{ , } {2 } { }

( ) ( )
( ) : ( ) ln [ ( )]

1

q

q q

p v p v
S p S dv p v p v dv

q



  


    


  .                 (55) 

Since in this case 

 
1

12 2
1

2

(1 ) 1
: 1, : : 2

1
(1 )

qq



 






        
         

    
   

,                  (56) 

1

{ , } { }

1
ln ( ) : ln ( ) :

2 1

q

q

x x x
x x

q

 

 

 
  

 
,                              (57) 

then formula (9) for the equilibrium distribution ( )eqp v in (2 q )- statistics takes the form: 

   1
{ }ln ( ) ( )eq
q p v v     ,                                      (58)  

or                                            { }( ) exp ( )eq
qp v v       .                                      (58

*
) 

Here 

 

1

{ }

1
ln ( ) :

1

q

q

x
x

q







,   

1/(1 )

{ }
1 (1 ) , if 1 (1 ) 0,

exp ( ) :
0, if 1 (1 ) 0

q

q
q x q x

x
q x

        
  

  

─ the deformed logarithm and the Tsallis exponent, respectively; q  − the deformation parameter. 

Equivalent equilibrium distribution function. Further, another representation of the equi-

librium probability distribution function (58) of the system in equilibrium will be used. To obtain 

it, let us average (58) over the distribution ( )eqp v ; as a result we will have 
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1
{ } { }ln ( ) ( ) ( )eq
q qp v    
 

E ,                                          (59) 

where { } ( ) ( )eq
q v p v dv E  is the average energy of the system. On the other hand, taking into ac-

count the formulas 
1

{ } { } { }ln ( / ) ln ( ) ln ( )q
q q qx y y x y   

 
 and { }ln 1 / ( 2)q q   , one can obtain 

   1
{ } { } {2 }ln ( ) ( ) 2 ln ( ) 1) 1 2eq eqeq eq
q q qp v q p p dv q S


         

    .           (60) 

From (59) and (60) it follows 

  { }{2 }2 1 ( )eq
qqq S    E .                                              (61) 

Using the Tsallis exponent property now [57] 

{ } { } { }exp ( ) exp ( ) exp
1 (1 )q q q

y
x y x

q x

 
    

  
,                              (62) 

then another expression (equivalent to (58 *)) can be obtained for the equilibrium probability 

distribution function in the Tsallis ( 2 q ) -statistics 

 { }( ) exp ( )eq
qp v v       { } { }{2 }exp 1 2 ( )eq

q qqq S v
       
 

E  

 
 

{ }

{ } { }{2 }

{2 }

( )
exp 1 2 exp

2 1 (1 )

qeq
q qq eq

q

v
q S

q q S




   
      

     
 

E
,                 

or in final form 

 { } {2 } { }
{2 }

1
( ) exp ( )eq

q q q
q

p v v


    
 Z

E .                              (63) 

The following notation is introduced here for the normalization constant {2 }qZ  and the inverse 

physical temperature {2 }q : 

   1
{ } {2 } { }{2 } {2 }: exp 1 2 exp ( )eq
q q q qq qq S v dv

 
          

   Z E  ,           (64) 

 
{2 }

{2 }

:
2 1 (1 )

q eq
qq q S






 

   
 

.                                     (65) 

The value 
1

{2 }q

Z , taking into account the properties 

1
{ } { } { }ln ( / ) (ln ln )q
q q qx y y x y

  and 

{ } {2 }1 / exp ( ) exp ( )q qx x   [10] and formulas 
1 1( ) (2 )q q     and 

1
{ }ln 1q

  , can be 

transformed to the following form: 
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 11 1
{ } {2 } {2 }ln ( ) 1 2 ln ( )eqq
q q qqq S 

 
          

   
Z  

   
1

{2 } {2 }2 2 eq eq
q qq q S S



 
      
 

. 

Hence, for the quantity {2 }qZ  we obtain several equivalent forms of notation 

   {2 } { } {2 }{2 } {2 }1 / exp expeq eq
q q qq qS S     Z  

 
1/( 1)

1/( 1) 2

{2 }1 ( 1) ( )

q
q q

eq eq
qq S p v dv


 



          
 .                            (66) 

From (66) and (67) there also follow several representations for the parameter 

  
 

     
1 1

2
1

{2 } {2 }

{2 }

2
( )

2 21 (1 )

q
q eq

q qeq
q

q
p v dv

q qq S

 



 



    
     

    
Z .        (67) 

Further, we will use the values known in the literature for the quantities { }qE and {2 }qZ  [58] 

 
 

2(1 )
2 31 1
3 1 221

{ } 2 1
1

1 2
( )

5 3 2 1

q

q
q qeq

q

q

v p v dv
q q q




 



     
           

E ,                  (68) 

 
 
 

1
11

1
1 1

2 1 2
{2 }

1
1

( )
( 1)

q
qq qeq

q

q

p v dv
q



 





     
         

Z .                         (69) 

Let us now extend these results to a ( 2 q )-system that is not in an equilibrium state, but 

evolves into this state in accordance with the kinetic process described by the power-law nonlin-

ear Fokker−Planck−Kolmogorov equation [59]. 

6. SOLUTION OF A NON-STATIONARY EQUATION 

FOKKER-PLANK-KOLMOGOROVA IN (2-q) - FORMALISM  

The most famous private analytical methods for solving the nonstationary FPK equation for a 

one-dimensional probability density are [60]: 

- variable separation method, 

- Laplace transform method, 

- method of transformation of variables, 

- the method of applying the Green's function. 

In this work, to find solutions to the above nonstationary FPK equations, we use the so-called 

ansatz method. 
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Let's consider the essence of this method. At the first step, an assumption is made that the so-

lution of the considered equation has a specific form of a function (ansatz), which depends on a 

number of undefined parameters. Formally, the initial guess, based on some heuristic considera-

tions, can be confirmed only after the final solution of the equation has been found. Then, in the 

second step, the test function is substituted into the equation to be solved, which leads to a sys-

tem of differential equations for free parameters, which, as a rule, is much easier to solve than 

the original equation. The ansatz approach is often an effective method for solving anomalous 

FPK equations, when it is possible to substitute a trial function into them and then check the so-

lution. It is important to bear in mind that a modification of the locally equilibrium Gibbs distri-

bution, which maximizes the entropy of the system under consideration, can often be used as 

such a test function. As it was shown in a series of works [21, 23, 24] this distribution coincides 

with the stationary solution (having a quasi-Gibbs form) of the corresponding anomalously dif-

fusion FPK equation, constructed from the point of view of a linear nonequilibrium thermody-

namics [23]. 

Note that in Sec. 2, the H-theorem was proved for the ( ,  ) -system, which provides a spon-

taneous increase in the entropy of the STM of an arbitrary nonequilibrium state of the stochastic 

( ,  ) -system in the direction of equilibrium, where it becomes maximum. At the same time, 

this process can be described by the power-law diffusion equation of the FPK, since these equa-

tions can be used to analyze irreversible systems are both far from equilibrium and near thermal 

equilibrium (i.e., near the maximum entropy). 

Let us now illustrate the ansatz approach by the example of solving the nonlinear non-

stationary one-dimensional diffusion equations of the FPK, written in the velocity space v  

2
2

{2 } 2
( , ) ( , ) ( , ) q

qp v t v p v t D p v t
t v v




           
.                         (70) 

As usual, we will assume that the probability distribution, together with its first derivative, as 

well as the drift term ( ) ( , )F v p v t , should vanish at infinity: 

     ( , ) 0
v

p v t


 ,    ( , ) 0
v

p v t
v







,     ( ) ( , ) 0

v
F v p v t


 ,   ( )t . 

As a test function, we use the function (compare with the locally equilibrium distribution 

(64)) 

 21
{ } {2 } { }2

{2 }

1
( , ) exp ( ) ( )

( ) q q q
q

p v t t v t
t 



   
 Z

E ,                       (71) 

where, {2 }( )q tZ , {2 }( )q t and { }( )q tE are time-dependent free parameters to be defined. For this 

purpose, we substitute (71) into the FPK equation (70) and find a system of first-order differen-

tial equations, which the indicated free parameters must satisfy, if the test function (71) is indeed 

a solution to equation (70). 

Introducing the notation 
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{2 }

1
( , ) ( , )

( )q

p v t Q v t
t

   Z
,                                                  (72) 

where  

 21
{ } {2 } { }2

( , ) : exp ( ) ( )q q qQ v t t v t
   
 

E      

and applying the rule { } { }[exp ( )] [exp ( )]qq qd x x dx of differentiation of the Tsallis exponent, we 

obtain the following intermediate relations: 

{2 }

2
{2 } {2 }{2 }

( )( , ) ( , ) ( , ) 1 ( , )

( ) ( )( )

q

q qq

tp v t Q v t Q v t Q v t

t t t t t tt



 

    
    
    
 

Z

Z ZZ
,              (73) 

{2 }

{2 } {2 } {2 }

( )( ) ( , ) ( , )
1

( ) ( ) ( )

q

q q q

tv p Q v tv Q v t v

v t v t vt



  

  
   

   
 

Z

Z Z Z
,            (74) 

22 2
2

2 2 2
{2 }

2 ( , ) ( , )
( , ) ( , ) (1 )

( )

q q

q
q

q Q v t Q v t
p Q v t Q v t q

vv vt

 




                  Z
,        (75) 

where  

           {2 } { }21
{ } {2 }2

( ) ( )( , )
( , ) ( ) ( )

q qq
q q

t tQ v t
Q v t v t t

t t t





    
    

    

E
E ,  

                                                    {2 }
( , )

( , ) ( )q
q

Q v t
Q v t v t

v 


  


, 

                                      
22

1
2 22

( , )
( ) ( , ) 1 ( ) ( , )q q
q q

Q v t
t Q v t qv t Q v t

v


 

  
     

 
. 

Substituting now (73)-(75) into (70), we obtain the equation 

 {2 } 12
{2 } {2 } {2 }

ln ( )
1 ( ) ( , ) ( ) 1 ( )

q q
q q q

t
D t v Q v t t D t

t

 
  

 
         


Z
 

 21 21
2 2

( ) ln[ ( )]
( , ) ( ) ( ) 0

q qq
q q

t t
Q v t t v t

t t




    
     

   

E
E .                      (76) 

Here we used the notation (cf. (68))  

 
1

{2 } {2 }( ) : 2 ( ) ( )
q

q qt q t t


 
    
 
Z ,                                          (77)  

reducing at 0t  to the expression 
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1

{2 } {2 }(0) : 2 (0) (0)
q

q qq


 
    
 
Z .                                     (78) 

We will further assume that at 0t   the unknown parameters {2 }( )q tZ , {2 }( )q t and { }( )q tE

coincide with their analogs in formula (64), i.e. fair identities {2 } {2 }(0)q q Z Z ,

{2 } {2 }(0)q q    , { } { }(0)q qE E and (0)  . 

Let us now consider in detail the procedure for solving the nonstationary equation (76). Since 

the parameter {2 }( )q tZ  does not depend on velocity v , two first-order equations follow from 

(76) 

{2 } {2 }ln ( ) 1 ( )q qt D t
t  


     
 
Z ,                                              (79) 

 { } 21
{ } {2 } {2 } {2 }2

( )
( ) ln ( ) ln ( ) 2 1 ( ) 0

q
q q q q

t
t t v t D t

t t t  

                    

E
E  .    (80)  

For a similar reason, two equations also follow from (80) 

{2 }
{2 } {2 }

( )
2 ( ) 1 ( )

q
q q

t
t D t

t



 


    
 

,                                      (81) 

{ }
{ } {2 }

( )
2 ( ) 1 ( )

q
q q

t
t D t

t 


    
 

E
E .                                         (82) 

Using (79) and (81), we can obtain 1/2
{2 } { }ln ( ) ln ( ) 0q qt t

t t

 
   
  
Z E , whence follows the 

algebraic relation 

{2 } {2 }1/2 1/2
{2 } { } { }1/2 1/2

{ } { }

(0)
( ) ( ) ( )

(0)

q q
q q q

q q

t t t
 



   
    
   
   

Z Z
Z E E

E E
                            (83) 

− formula that allows you to determine a parameter {2 }( )q tZ , if the value { }( )q tE is known. Car-

rying out a similar procedure with equations (81) and (82), we obtain, taking into account (68), 

the algebraic relation 

 
   1

{2 } {2 } { } { }{2 }
{ } { }

1 1
( )

( ) 2 ( )

q
q q q qq

q q

t
t q t


  


   


ZE E

E E
.                (84) 

We now turn to the derivation of the equation for the function { }( )q tE and its solution. Com-

bining (83), (84), (77) and (78), for the quantity ( )t we have 

90



A.V. Kolesnichenko 

 

 

1

{2 } ( 3)/2 ( 3)/2
{2 } { } { }( 3)/2 ( 3)/2

{ }{ }

(0)
( ) : 2 ( ) ( )

(0)

q

q q q
q q qq q

qq

t q t t



  
  

   
       

     

Z
E E

EE

.             (85) 

Substituting (85) into (82), we obtain the following equation for { }( )q tE  

( 3)/2{ } {2 }
{ }( 3)/2

{ }

ln ( )
2 2 ( )

qq q
qq

q

t D
t

t





       
 

E
E

E
.                          (86) 

If we introduce a substitution 
1/

{ }( ) ( )q t w t  E and accept the notation
3

2

q
   and

(3 )/2
{ } {2 } { }

q
q q qb D 

 E , then equation (86) can be written in the form of the well-known Riccati 

equation 

1
( )

2 ( ) 2
w t

w t b
t


   


.                                             (87) 

The solution to this equation has the form 

  { }( ) exp( 2 )qw t b C t    ,                                           (88) 

where { }qb is a particular solution of equation (87), C is the constant of integration. This implies 

the following algebraic relation for the required parameter { }( )q tE  

 
2/(3 )

(3 )/2
{ } {2 } { }( ) exp ( 3)

q
q

q q qt D C q t



     E E .                        (89) 

Determining the constant 
(3 )/2

{ } {2 }(1 )q
q qC D

 E from (89) (for 0t  ), we finally have 

 
2/(3 )

{ } { } {2 } {2 }( ) (1 )exp ( 3)
q

q q q qt D D q t


       E E .                  (90) 

Thus, using expressions (68) and (69) for the quantities { }qE  and {2 }qZ , we can determine 

the sought parameters {2 }( )q tZ , {2 }( )q t  and { }( )q tE of the problem, from formulas (83), (84), 

and (90). 

7 CONCLUSIONS 

Investigations in the field of statistical mechanics and thermodynamics of nonextensive 

systems have recently acquired considerable general theoretical interest in connection with the 

manifestations of nonextensive properties in many anomalous physical phenomena and the 

importance of practical applications. The range of applications of various non-extensive 

parametric entropies is constantly expanding, covering various areas in science, such as 
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cosmology and cosmogony, quantum mechanics and statistics, special and general relativity, 

stochastic dynamics and fractals, geophysics, biomedicine, and many others. Among 

nonextensive entropies, the two-parameter Sharma–Taneja–Mittal entropy occupies a special 

place, since it allows one to obtain distributions that are observed in various physical, natural, 

and artificial systems. 

In the presented work, within the framework of statistics based on the ( , )  -entropy of the 

STM, it is shown how one can obtain the equilibrium thermodynamics of a nonextensive system 

and determine its features. The basic mathematical properties of doubly deformed logarithm and 

exponent are presented, as well as other related functions that are necessary in the construction 

of nonextensive equilibrium thermodynamics. Taking into account the convexity property of 

Bregman's divergence, it is shown that the principle of maximum equilibrium entropy of the 

STM, the Legendrian structure of the theory, and the H -theorem describing the evolution of a 

chaotic system in time are preserved for ( , )  -systems. 

An important aspect related to the derivation of nonlinear power-law FPK equations correlat-

ed with the Sharma–Taneja–Mittal entropy is analyzed. In this case, the resulting diffusion equa-

tions are written in such a way that their stationary solutions are probability distributions that 

maximize the entropy of the STM for nonextensive ( , )  -systems. The method of the ansatz 

approach is considered for solving the nonlinear nonstationary one-dimensional FPK equations 

written in the (2 )q -formalism Tsallis statistic. 

The nonlinear diffusion equations of FPK constructed in this way can be used to solve prob-

lems of probabilistic analysis in many areas of science. In particular, the statistical thermody-

namic approach, as well as the power-law FPK based on kappa statistics, can be useful in study-

ing the spread of epidemics and pandemics. 
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