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Summary. In the present investigation, we define the arrowhead-Jacobsthal sequence by the 

arrowhead matrix B  defined with the help of the characteristic polynomial of the generalized 

order-k Jacobsthal numbers. Next, we derive various properties of the arrowhead-Jacobsthal 

sequence by using its generating matrix. Also, we give connections between Fibonacci, 

Jacobsthal, Pell and arrowhead-Jacobsthal numbers.  

1 INTRODUCTION 

The Fibonacci, Pell and Jacobsthal sequences are known to be defined by the following 

recurrence relationships, respectively: 

1 2 0 1=  for  2  in which  = 0 and =1,n n nF F F n F F  

1 2 0 1= 2  for  2  in which  = 0 and =1n n nP P P n P P    

and 

1 2 0 1= 2  for  2  in which  = 0 and =1.n n nJ J J n J J    

It is easily seen the characteristic polynomials of the above sequences are 

  2

1 = 1h x x x  ,   2

2 = 2 1h x x x   and   2

3 = 2h x x x  , respectively. 

The square matrix with zeros at allelements except the first row, first column, and main 

diagonal is called the Arrowhead matrix.That is, an arrowhead matrix is as shows: 

   

1,1 1,2 1,3 1,4 1,

2,1 2,2

3,1 3,3

1,1 1, 1

,1 , .

0 0 0

0 0 0
=

0 0

0 0

0 0 0

n

n n

n n n

n n n

h h h h h

h h

h h
H

h h

h h



  

 
 
 
 
 
 
 
 
  

The k  sequences of the generalized order-k Jacobsthal numbers are defined [21] as 

follows: 

 for > 0n , 1 i k 

 1 2 = 2 ... ,i i i i

n n n n kJ J J J    
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with integer constants  

 
1 if = 1 ,

= ,  1 0.
0 otherwise,

i

n

n i
J k n


  


 

This sequence is known to has the following characteristic polynomial: 

   1 2 3= 2 1.J k k k k

kP x x x x x x        

In [11], Kalman used the companion matrix method and obtained closed-form formulas for 

the generalized sequence defined as  

 
0 1 1 1 1=n k n n k n kb q b q b q b        

where 
0 1 1, , , kq q q 

 are real constants. 

 

Suppose that A  is defined as 

 ,

0 1 2 2 1 ,

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0
= =

0 0 0 0 1

i j k k

k k

A a

q q q q q



 

 
 
 
 

    
 
 
 
  

 

then 

 

0

1 1

1 1

=

n

nn

k n k

b b

b b
A

b b



  

   
   
   
   
   
   

 

for 0n  . 

There have been many studies on this paper in the literature: see for example, [2, 5, 9, 15, 

16, 17, 18, 19]. Some linear recurrence sequences are defined and their various properties are 

given using the matrix methods by many authors in [6, 7, 8, 13]. In [10] and [1],the 

arrowhead-Fibonacci and the arrowhead-Pell numbers were defined and obtained their 

structural properties, respectively. In this paper, we extend the concept to the generalized 

order-k Jacobsthal sequence. Firstly, we define the arrowhead-Jacobsthal sequence. Further, 

we obtain its various properties such as the combinatorial representation, permanental 

representations, determinantal representations, Binet formula, exponential representation and 

sums by matrix methods. Finally, we investigate relationships between Fibonacci, Jacobsthal, 

Pell and arrowhead-Jacobsthal numbers. 
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2 THE ARROWHEAD-JABOSTHAL NUMBERS 

We derive the arrowhead matrix by characteristic polynomial of the generalized order-k 

Jacobsthal sequence as shown: 

 
   1 1

.

  1 1 2 1 1 1

1 1   0   0  0   0

2   0 2   0  0   0

= 1   0  0 1  0   0

        

1   0   0    0 1   0

1   0   0    0   0 1

k k
B

  

     
 
 
 
  
 
  
 
 
  
   

 

Now we consider a new sequence named the arrowhead-Jacobsthal sequence by initial 

conditions    1 11 = = = 0k kx x k   and  1 1 = 1kx k   and the recurrence relation 

           1 1 1 1 1 11 = 1 2 2 3k k k k k kx n k x n k x n k x n k x n k x n                          (2.1) 

for 1n   and 3k  . 

By relation (2.1), it is defined the generating matrix for the sequence   1kx n  as shown: 

 

   1 1 .

1 1 2 1 1

1   0   0   0   0

0   1   0   0   0
=

     

0  0     1 0   0

0  0     0 1   0

A

k

k k

J

  

    
 
 
 
 
 
 
 
 

 

The companion matrix A

kJ  is called arrowhead-Jacobsthal matrix. For companion matrices, 

see [12, 14]. 

 

For the following matrices we will consider as > 2k  , 

  

4 5 4 3 2 3

4 4 4 4 4 4

3 4 3 2 1 2

4 4 4 4 4 4

3 2 3 2 1 1

4 4 4 4 4 4

1 2 1 1

4 4 4 4 4 4

2

2
=

2

2

A

x x x x x x

x x x x x x
J

x x x x x x

x x x x x x

     

     


     

     

     

     

    

   

    
 

    
    
 

     

 

and 
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1 2 1 1 2

1 1 1 1 1 1 1

1 1 2 1 1

1 1 1 1 1 1 1

1 1 2 3

1 1 1 1 1 1 1

2

2

= 2

k k k k k k

k k k k k k k

k k k k k k

k k k k k k k

A k k k k k A
k k k k k k k k k

x x x x x x x

x x x x x x x

J x x x x x x J x

      

      


      

          

      

          

      

        

      

     

     

      2

1 2 1 1 2

1 1 1 1 1 1 1 ,
2

k

k

k k k k k k kx x x x x x x      

 

     

      

 
 
 
 
 
 
 

      

 

where 4k  ,  1kx   is denoted by 1kx  and A

kJ


 is a matrix with  1k   row and  3k   

columns as follows: 

3 4 4 5 1

1 1 1 1 1 1 1 1

2 3 1 3 4 1 2 1

1 1 1 1 1 1 1 1

1 2 2 2 3

1 1 1 1 1
=

k k k k

k k k k k k k k

k k k k

k k k k k k k k

A k
k k k k k k

x x x x x x x x

x x x x x x x x

J x x x x x

       

       

    

        

       

           

       


     

    

         

         

        2 3 2

1 1 1

3 4 4 5 1

1 1 1 1 1 1 1 1 .

k k k

k k k

k k k k

k k k k k k k k

x x x

x x x x x x x x

  

       

     

  

        

       

 
 
 
  
 
 
          

 

It should be noted that  
1

det = 1 .
kA

kJ


  Simpson’s formulas for the arrowhead-Jacobsthal 

sequences can be easily derived for each 4k  . 

 

Example 2.1 Since 5det = 1AJ  , the Simpson formula of sequence   5x n  for > 2n  is 

 

4 2 2 2 2 2 2

2 4 1 3 2 3 1 2 4

1 5 1 3 5 1 2 1 2 3 4

3 3 2 2 2

1 3 5 1 1 5 2 5 3 1 1 4

1

1 = ( 2 2

        2 2 )

       (

       2

n n n n n n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n n n n

n n

x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x

x x

        

          

           



     

  

    

2 2

3 4 2 4 1 2 32 3 ),n n n n n n n nx x x x x x x x       

 

where  5x n  is denoted by 
nx .  

 

Suppose that  1 2, , , uC c c c  is a u u  companion matrix as follows: 

  

1 2

1 2

.

1 0 0
, , , =

0 1 0

u

u

c c c

C c c c

 
 
 
 
 
 

 

Theorem 2.1 (Chen and Louck [4]).The  ,i j  element 
   , 1 2, , ,i j uc c c c


 in the matrix 

 1 2, , , uC c c c
 is expressed by the following equation: 

   
 

1 1 1
, 1 2 1

11 2, , ,
1 2

, , , =
, ,

ttj j u u u
i j u u

uut t t
u

t t t t t
c c c c c c

t tt t t

      
 

    
  (2.2) 
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such that the sum is on nonnegative integers satisfying 
1 22 =ut t ut i j     , 

 1 1

1 1

!
=

, , ! !

u u

u u

t t t t

t t t t

    
 
 

 is a multinomial coefficient, and the coefficients in (2.2) are 

defined to be 1  if = i j  .  

 

Corollary 2.2 Suppose that  1kx   is the  th the arrowhead-Jacobsthal number for 3k  . 

In this case 

  
 

   1 11 3 2 4 5 1
1

1 11 2 1, ,
1 2 1

= 2 1
, ,

t t t t tkk k
k

kkt t t
k

t tt
x

t tt t t


    





  
    

    
  

where the summation is over nonnegative integers satisfying  1 2 12 1 = .kt t k t       

 

Proof. Since we take = 1u k  , = = 1i j k  , 
1 3=1, = 2c c  , 

2 4 5 1= = = = = 1kc c c c    in 

Theorem 2.1, thus the conclusions can be viewed directly from   .A

kJ


  

 

Definition 2.1  If the ths  column (row) contains exactly two non-zero elements, then an m n  

real matrix ,= i jT t    is called a contractible matrix in the ths  column (row).  

 

In [3], it was derived that    =per W per V  if W  is a real matrix of order >1  and V  is 

a contraction of W . 

Let 1v k  ,  3k   and let    ,

,, =
v k

i jM v k m 
 

 be the v v  super-diagonal matrix, 

defined by 

  ,

,

if = =  for 1

1 and

= 1 and =  for 1 1,

if =  and = 1 for 1 1,

=  and = 3 for 1 3,
=

1 =  and = 4 for 1 4,

=  and =  for 1 ,

2 if =  and = 2 for 1 2,

 0 o

v k

i j

i j r r v

i r j r r v

i r j r r v

i r j r r v
m

i r j r r v

i r j r k r v k

i r j r r v

 

   

   

   

    

   

    

therwise,

















 

that is, 
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.

1 th

1 1 2 1 1 0 0 0 0

0 1 1 2 1 1 0 0 0

0 0 1 1 2 1 1 0 0

, = 0 0 0 1 1 2 1 1 0

0 0 0 0 1 1 2 1 1

0 0 0 0 0 0 1 1 2 1

0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 1 1

k

M v k





    
 

   
 
    
 
 
    
 

    
 
 

   
 

  
  

 

Theorem 2.3 For 1v k  , 3k  , 

    1, = 1 .kperM v k x v k    

Proof. It may be applied the inductive method on v  for proof. Assume that the equation 

satisfies for 1v k   such that 3k  . Now let’s prove that the equation satisfies for 1v . 

Then expanding the  ,perM v k  with the Laplace expansion relative to the first row, so we 

get 

         1, = , 1, 2 2, 3,perM v k perM v k perM v k perM v k perM v k        

                                , .perM v k k    

Since    1, = 1kperM v k x v k   ,    11, = kperM v k x v k  , ,    1, = 1kperM v k k x v  , 

from definition of the arrowhead-Jacobsthal sequence  1 ,kx n  clearly, the following equality 

is achieved: 

    11, = 1 .kperM v k x v k    

Thus the result of the theorem holds.  

Let 1v k   such that 3k  . Define the v v  matrix    ,

,, =
v k

i jN v k n 
 

 as shown: 

 ,

,

if = =  for 1 ,

= 1 and =  for 1 3
1

and

= 2 and = ,

if =  and = 1 for 1 3,

= =  and = 3 for 1 3,

1 =  and = 4 for 1 4,

=  and =  for 1 ,

2 if =  and = 2 f

v k

i j

i j r r v

i r j r r v

i v j v

i r j r r v

n i r j r r v

i r j r r v

i r j r k r v k

i r j r

 

   



   

   

    

   

  or 1 3,

 0 otherwise.

r v
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Suppose that the v v  matrix    ,

,, =
v k

i jR v k r 
 

 is defined by 

    

,

1 1 0 0

1

, = 0 1,

0

R v k N v k

 
 
 
 
 
 
  

 

where 1v k   such that 3k  . 

 

Theorem 2.4  (i). For 1v k  , 

   1, = 1 .kperN v k x v k    

(ii). For 1v k  , 

   
2

1

=1

, = .
v k

k

i

perR v k x i
 

  

Proof. It will be applied the induction method on v . 

(i). Now assume that    1, = 1kperN v k x v k    for 1v k  . We examine the case 1v . 

Then expanding the  ,perN v k  with the Laplace expansion relative to the first row, by the 

definition of the matrix  ,N v k , gives us 

         1, = , 1, 2 2, 3,perN v k perN v k perN v k perN v k perN v k        

                                     , .perN v k k    

According to definition of the arrowhead-Jacobsthal sequence, 

          1 1 1 11, = = 1 2 2 3k k k k kperN v k x v k x v k x v k x v k               

                             1 14 1 .k k kx v k x v       

So the result holds. 

 

(ii). Since we expand the  ,perR v k  with the Laplace expansion relative to the first row, we 

reach 

      1, = 1, 1, .perR v k perR v k perN v k     

The inductive argument and by the result of part (i) in Theorem 2.4,the result has been 

reached.  

A matrix Q  is called convertible if there is an n n  (1, 1) -matrix L  such that 

 = detperQ Q L , where Q L  shows the Hadamard product of Q  and L . We will now 
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address the determinantal representations for the arrowhead-Jacobsthal numbers. Let 

1v k  ,  3k   and let H  be the v v  matrix, defined by 

.

  1   1 1     1 1

1   1 1     1 1

  1 1 1     1 1
=

        

  1   1 1   1 1

  1   1   1 1 1

H

 
 

 
 
 
 
 
 

 

 

Corollary 2.5 For 1v k   and 3k  , 

     1det , = 1 ,kM v k H x v k    

     1det , = 1kN v k H x v k    

and 

     
2

1

=1

det , = .
v k

k

i

R v k H x i
 

  

Proof. Since     , = det ,perM v k M v k H ,     , = det ,perN v k N v k H  and 

    , = det ,perR v k R v k H , by Theorem 2.3, and Theorem 2.4, the results are obvious.  

 

Lemma 2.1 The equation 1 1 2 32 1= 0k k k k kx x x x x          does not have multiple 

roots.  

 

Proof. Let   1 1 2 3= 2 1k k k k kf x x x x x x         , then  
2

1 1 2 1
= 2

1

k
k k k k x

f x x x x x
x


   
   


. It 

is clearly seen that (0) 0f  , (1) 0f   for all 3k  . Assupose that 

      2 1 1 2= 1 = 2 2 1k k k k kh x x f x x x x x x         . Let   be a multiple root of  h x , then 

 0,1  . If possible   is a multiple root of  h x  in this case   = 0h   and   = 0'h  . 

Now   = 0'h   and 0   give      4 3 22 2 1 3 1 2 = 0k k k k k           . Using 

appropriate softwares such as mathematica wolfram 10.0 [20], we obtain roots of this last 

equation as follows: 

 

   

   

 

   

   

   

 

 

 

 

 

   

   
 

   

 

   
 
 

1
22

3

1 1 2
2

3

3

1
3 2 22

3

1 212 23 3

2
1

2
3

2

2 21 11 4
=

2 3 3 223 2

8 1 16 1 8 1

22 21 2 2 2 2 1 11 8
       

2 3 3 2 2 223 2 21
4.

3 1 4
3 2

3 22

k ba k k

b kkk a

k k k k

kk ba k k k kk

b k kkk a k ba

b k k
k a

kk
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1
22

3

2 1 2
2

3

3

1
3 2 22

3

1 212 23 3

2
1

2
3

2

2 21 11 4
=

2 3 3 223 2

8 1 16 1 8 1

22 21 2 2 2 1 11 8
       

2 3 3 2 2 223 2 2 21
4.

3 1 4
3 2

3 22

k ba k k

b kkk a

k k k k

kk ba k k k kk

b k kkk a k ba

b k k
k a

kk


 

    


  
             

       



  



  

  

   

   

 

   

   

   

 

 

 

 

 

   

   
 

   

 

   
 
 

1
22

3

3 1 2
2

3

3

1
3 2 22

3

1 212 23 3

2
1

2
3

2

2 21 11 4
=

2 3 3 223 2

8 1 16 1 8 1

22 21 2 2 2 1 11 8
       

2 3 3 2 2 223 2 2 21
4.

3 1 4
3 2

3 22

k ba k k

b kkk a

k k k k

kk ba k k k kk

b k kkk a k ba

b k k
k a

kk


 

   


  
             

       



  



  

and 

 

   

   

 

   

   

   

 

 

 

 

 

   

   
 

   

 

   
 
 

1
22

3

4 1 2
2

3

3

1
3 2 22

3

1 212 23 3

2
1

2
3

2

2 21 11 4
=

2 3 3 223 2

8 1 16 1 8 1

22 21 2 2 2 2 1 11 8
       

2 3 3 2 2 223 2 21
4.

3 1 4
3 2

3 22

k ba k k

b kkk a

k k k k

kk ba k k k kk

b k kkk a k ba

b k k
k a

kk


 

   


  
             

       



  



  

where 3 6 4 3 2=115 13257 86886 62100 178497 199260 223452 369 270a k k k k k k k         and 3 3 23= 2 6 12 8b k k k   . 

For 3k  ,  1 0h   ,  2 0h   ,  3 0h    and  4 0h   , which is a contraction and with 

this contraction the conclusion is reached.  

Suppose that  f x  is the characteristic polynomial of the matrix A

kJ . If 
1x , 

2x , ,
1kx 
 

are roots of the polynomial  f x , by Lemma 2.1, we can see that 
1x , 

2x , ,
1kx 
 are distinct. 

Define the Vandermonde matrix 1kV   as shown:  

 

     

     

1 2 1

1 1 1

1 2 1
1

1 2 1

.

=

1 1 1

k k k

k

k k k

k
k

k

x x x

x x x

V

x x x



  






 
 
 
 
 
 
 
 

 

Assume that 
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1

1

1

1 2

1

1

=

k i

k i

k

i

k i

k

x

x
G

x







  

  



  



 
 
 
 
 
 
 

 

and 
1

,

k

i jV 
 is derived from 1kV   by replacing the j th column of 1kV   by the matrix 1k

iG  . 

 

Theorem 2.6 For > 2k   and 3k  , 

 

1

,,

, 1

det
= ,

det

k

i jk

i j k

V
j

V






 

where   ,

,=A k

k i jJ j


   .  

Proof. The matrix A

kJ  is diagonalizable because the eigenvalues of the matrix A

kJ  are distinct. 

Let  1 1 2 1= , , ,k kH x x x  , then we easily see that 1 1

1=A k k

k kJ V V H 

 . Since the matrix 1kV   is 

invertible, we may write  
1

1 1

1=k A k

k kV J V H


 

 . Then the matrix A

kJ  is similar to 
1kH 
; so in 

this case we get    1 1

1=A k k

k kJ V V H
 

  for > 2k   and 3k  . Hence we obtain linear 

system of equations as follows: 

 

     

     

     

1 1, , ,

,1 1 ,2 1 , 1 1

1 1, , ,

,1 2 ,2 2 , 1 2

1 1, , ,

,1 1 ,2 1 , 1 1

=

=

=

k k k ik k k

i i i k

k k k ik k k

i i i k

k k k ik k k

i k i k i k k

j x j x j x

j x j x j x

j x j x j x

  

  

  

   



   



   

   

   

   




  

 

for > 2k   such that 3k  . Then, for , =1,2, , 1i j k  , it is obtained 
,

,

k

i jj 
 as follows 

1

,,

, 1

det
= .

det

k

i jk

i j k

V
j

V






 

Corollary 2.7 Suppose that  1kx   is the  th the arrowhead-Jacobsthal number for 

> 2k   such that 3k  . Then 

 
1

1, 1

1 1

det
= .

det

k

k k

k k

V
x

V




 

 
  

Now we will be concerned the exponential representation of the arrowhead-Jacosthal 

numbers. Using direct calculation, we obtained the generating function of   1kx   as 

shows: 
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   2 3 4 1
= ,

1 2

k
k

k

y
g y

y y y y y      
 

where 3k  . 

 

Theorem 2.8 An exponential representation of the arrowhead-Jacobsthal numbers is given as 

follows: 

    2 3

1

= exp 1 2 ,
i

i
k k k

i

y
g y y y y y y

i





 
     

 
  

where 3k  .  

 

Proof. It is clear that 

 
 2 3 4 1ln = ln 1 2 .

k

k

k

g y
y y y y y

y

        

By the function ln x  we obtain the relation 

   

 

2 3 4 1 2 3

2
2 2 3

ln 1 2 = 1 2

1
                                                               1 2

2

1
                                                               1

k k

k

n

y y y y y y y y y y

y y y y y

y
n

               


      

 2 32 .
n

ky y y y


     


 

A simple calculation shows that 

 
 

 2 3

1

ln = exp 1 2 .

k i
i

k

k
i

g y y
y y y y

y i





 
     

 
  

Thus we have the conclusion.  

 

Let  

  1

=1

= k

i

S x i


   

for 1   and 3k  , and let 
kP  be as follows: 

 

.

1 0 0

1

= 0

0

A

k k
P J

 
 
 
 
 
 
  

 

Then it can be shown by induction that 
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    1

.

1 0 0

=

k

A
k k k

S

P S J

S











 

 
 
 
 
 
 
 
  

 

3 THE CONNECTIONS BETWEEN FIBONACCI, PELL, JACOBSTHAL AND 

ARROWHEAD-JACOBSTHAL NUMBERS 

In this section we discuss relationships between Fibonacci, Jacobsthal, Pell, Arrowhead-

Jacobsthal numbers. We next define the sequences  u

na ,  u

nb  and  u

nc  by the following 

homogeneous linear recurrence relation for =1,2u  and 1n   

 
5 4 3 2 1

3 6 5 4 3 2 1

2 1 1 2 3

2 1

2 2 2 3 if = 3,

= 2 2 2 2 2 if = 4,

2 2 2 2
if 5,

2

u u u u u u

n n n n n n

u u u u u u u u

n k n n n n n n n

u u u u u u

n k n k n k n k n k n k

u u u

n n n

a a a a a a k

a a a a a a a a k

a a a a a a
k

a a a

    

       

          

 




    


     


     
   

 

 
5 4 3 2 1

3 6 5 4 3 2 1

2 1 1 2 3

2 1

3 2 4 4 if = 3,

= 3 2 4 3 3 if = 4,

3 2 4 3 2
if 5,

2 3

u u u u u u

n n n n n n

u u u u u u u u

n k n n n n n n n

u u u u u u

n k n k n k n k n k n k

u u u

n n n

b b b b b b k

b b b b b b b b k

b b b b b b
k

b b b

    

       

          

 




    


     


     
   

 

and 

 
5 3 2 1

3 6 4 3 2 1

2 1 2 3

2 1

2 3 3 5 2 if = 3,

= 2 3 3 4 3 2 if = 4,

2 3 3 4 2
if 5

2 3

u u u u u

n n n n n

u u u u u u u

n k n n n n n n

u u u u u

n k n k n k n k n k

u u u

n n n

c c c c c k

c c c c c c c k

c c c c c
k

c c c

   

      

        

 




   


    


    
    

 

with initial conditions 

1 1 1 2 2 2

1 1 2 2 3 3 1 1 2 2 3 3= , = , , = ,  = , = , , = ,k k k ka F a F a F a x a x a x     

1 1 1 2 2 2

1 1 2 2 3 3 1 1 2 2 3 3= , = , , = , = , = , , = ,k k k kb P b P b P b x b x b x     

 1 1 1 2 2 2

1 1 2 2 3 3 1 1 2 2 3 3= , = , , =  and = , = , , = .k k k kc J c J c J c x c x c x     

Now we give connections among Fibonacci, Jacobsthal, Pell and Arrowhead-Jacobsthal 

numbers. 

 

Theorem 3.1 For 1n  , 
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      1 2 1 2 1 2

1 1 1= , = , = , = , = , = .n n n k n n n k n n n ka F a x n b P b x n c J c x n    

Proof. Let’s take the first equation. It may be applied the induction method on n  for proof. 

By defining initial conditions of the sequence  1

na , we know that 1

1 1=a F . Then we assume 

that the equation satisfies for n . Now, we prove that the equation satisfies for 1n . Since the 

characteristic polynomial of the sequence  u

na ,  = 1, 2u  is 

  

6 5 4 3 2

7 6 5 4 3 2

3 2 1 1 2

3 2

2 2 2 3 1 if = 3,

= 2 2 2 2 2 1 if = 4,

2 2 2 2
if 5

2 1

k k k k k k

k

x x x x x x k

p x x x x x x x x k

x x x x x x
k

x x x

    






     


      


      
    

 

and      1=p x f x f x , such that  1f x  and  f x  are the characteristic equation of the 

Fibonacci and arrowhead-Jacobsthal sequence, repectively, the following relations are 

obtained  

 
5 4 3 2 1

3 6 5 4 3 2 1

2 1 1 2 3

2 1

2 2 2 3 if = 3,

= 2 2 2 2 2 if = 4,

2 2 2 2
if 5,

2

n n n n n n

n k n n n n n n n

n k n k n k n k n k n k

n n n

F F F F F F k

F F F F F F F F k

F F F F F F
k

F F F

    

       

          

 




    


     
     
 
   

 

and  1 3kx n k    

           

             

         

     

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

2 5 4 2 3 2 2 3 1 if = 3,

= 2 6 5 2 4 2 3 2 2 2 1 if = 4,

2 2 1 2 2 1 2 2

3 2 2 1

k k k k k k

k k k k k k k

k k k k k

k k k

x n x n x n x n x n x n k

x n x n x n x n x n x n x n k

x n k x n k x n k x n k x n k

x n k x n x n

     

      

    

  

         

           

             

        1

if 5.
k

k
x n







 
 

 

Thus, we have the result by a simple calculation. 

Other proofs are similar to the above.  

4 CONCLUSIONS 

In this paper, we define the arrowhead-Jacobsthal sequence. Then, we give some properties 

of arrowhead-Jacobsthal sequence such as the combinatorial representation, permanental 

representations, determinantal representations, Binet formula, exponential representation and 

sums by matrix methods. Also, we investigate relationships between Fibonacci, Jacobsthal, 

Pell and arrowhead-Jacobsthal numbers. 
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