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Summary. This paper is dedicated to solving of the direct and inverse spectral problem for Sturm
Liouville type of operator with constant delay from g to 7, non-zero initial function and Robin’s
boundary conditions. It has been proved that two series of eigenvalues unambiguously define the
following parameters: delay, coefficients of delay within boundary conditions, the potential on the
segment from the point of delay to the right-hand side of the distance and the product of the starting
function and potential from the left end of the distance to the delay point.

1 INTRODUCTION

Spectral theory represents a part of mathematical analysis which studies the spectrum, i.e.
series of eigenvalues and vectors associated with linear operators defined on infinite
dimensional functional spaces. Spectral problems can be divided into direct and inverse
problems. Direct problems imply the constructions of characteristic functions, decomposition
of functions from the domain of the operator according to the eigenfunctions of the operator,
studying the asymptotics of their zeros as well as the asymptotics of eigenvalues of the operator.
Inverse problems imply the construction of linear operator based on some of its known spectral
characteristics. Fort he inverse problem of classic operator Sturm Liouville type, first results
are obtained in papers [1], [2].

A current problematics that has been developing since the 1990s, (see [3],[4]) is exactly the one
dealing with inverse spectral problems of Sturm Liouville type with removed argument.

The great number of published papers and significant results speak in favour of the fact that
this field of mathemathics has developed intensly. Here are some of the results related to
various types of delay. (see [3-24] )

This paper studies the direct and inverse spectral problem given with the following:
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V') + a0y —1) = y(x), A=7% t€|5m )
y(x - T) = <P(x - T)’ X € [01 T], (p(O) =1 (2)
y'(0) = hy(0) =0, heR 3)
y'(n) + Hy(r) =0, HER (4)

In papers [5-19] instead of the condition (2) we use the condition
y(x—1) =0, x €[0,71).
Letus have q € L,[0,7], ¢ € L,[—1,0].

The equation (1) with boundary condition (2) is equivalent to the integral equation

y(x,z) = cosxz + gsin Xz + if(jc q(ty)sinz(x —t)y(t; —1,2)dt, (5)
Let us define the function
~ _ q(tl)(p(tl - T)' tl € [O,T]
ate) = {1 T ©)

The solution of the equation (5) at distance (0, ] is given with
y(x,z) = cosxz + gsin Xz + ifox G(t;)sinz(x —ty) dt, @)
Next, we use the following functions
as.(x,2) = [T q(ty) sinz(x — t;) cos z (t; — 1)dt;
ag(x,z) = [ q(t) sinz(x — t;) sinz (t; — 1)dt;
aP(x,2) = [} Gt sinz(x — t;) dt;
a4 (x2) = [Fqty) [T q(t,) sinz(x — t;) sinz(t, — T — t)dtdty

At distance (t, ] the solution of the equation (5) is given with

y(x,z) = cosxz + gsin Xz + iag) (x,2) + éasc(x, z) +
h 1 (11
+5a2(x2) + agz )(x,2) (8)

2 THE CONSTRUCTION OF CHARCTERISTIC FUNCTIONS OF D? OPERATOR

The boundary problem given in (1-4) will be denoted shorter as D2y = Ay. Let us construct
a characteristic function of the operator D2.
If we vary the condition (4) with H to H;, j = 1,2 we obtain two characteristic equations

Fi(z) = 0.
Let us also introduce the following functions

a.2(x,z) = frx q(ty) cosz(x — t;) cos z (t; — T)dt;
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a.s(x,z) = fo q(ty) cosz(x — t;)sinz (t; — 7)dt,
alP(x,z) = Jy @(t1) cos z(x — ty)dt;
(1 )(x z) = f q(ty) cosz(x — tl)f "§(ty)sinz(t, — T — t,)dt,dt,
From (8) we obtain the following
—y(x z) = —zsinxz + hcos xz +a( )(x z)+a2(x,z)+- acs(x zZ)+- a(1 1)(x,z) 9)

Putting x = m in (8) and (9), and then omit r in the labels, for example a 2(m, x) = a,2(x) ,
based on the condition (4) the following is obtained

Fi(z) = (—z + 7)smnz + (h + H]) cosmz +a; ' (z) +a.2(z) + — +

(10)
+aa(z) + H aP(2) +— " ~aes(2) + H aSC(z) i1 a(l D(z) + il a7 (2)
Let us transform the functions F; given in (10).
If we have
10) = 326, 4©) =q(0+3), 1= [ate)de, = {9 0)ds
a(z) = fg”q (6) cos(rr — 26)zd8, b(z) = fz”‘gq (6) sin(r — 26)zd6
Then the following relations are valid
a.2(2) = 28(2) + Zcos(m — 1)z, ag(z) =5a(z) — Zcos(m — 1)z
(11,)
a.s(z) = —%B(z) + %sin(n — 1)z, as.(2) = %B(z) + %sin(n —1)z
Next, let us have
4(2) = [ (8) cos(r — 20)2d6, b(z) = [2{ (6) sin(r — 20)7d6 (11,)
Then we get
o (2) = 2a(2), a{’(2) = 2b(2) (115)

Then we transform the functions a(1 D (z) and a(1 D (2).

By translating the product of trlgonometrlc functions into sums, and then changing the order
of integration, we obtain the following

a4V (2) =

1 20 .
= f: U@ q(t)q(2t, — 26 —1)dty — G260 — 1) | q(t1) dtll cos(m — 26)zd6

+— 20
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m—= Y
+L 2[ Tq(tl)c?(Ztl — 20 — 1)dt, cos(t — 20)zd6
— O+=

Let us define the function QD (8) with

26 T

(400326 —20 = Ddt; 420 - 1) | q(t)des, oel>.5)
2

QU1 (6) = ! 2 ;
Ik L+_Q(t1)CI(2t1 —20 —1)dt;, 6€ [2 T ——]

and put

a®D(z) = f; 2QWD(6) cos(n — 26)zds,

2

bD(2) = [ 20D (0) sin(w — 20)zd6

2

Then the following relation is valid

a5 (2) = a4 () (114)
Quite analogously, we obtain the following equation
P (2) = —b4D () (11s)

Using the relations (11,), [ = 1,5, the functions in (10) obtain the following form

Fi(z) = (— 7+ )51n7rz+(h+H)cos7rz+2a(z)+—’b()+

hH
+;(1 —Z—z) cos(m — r)z+; (1 +—) ( ) +—(h + H;)sin(m — 1)z + (12)
1 ~ (z)
+ L (Hy — h)b(2) - 22 4 1 a0D ()
Functions F; are entire functions of exponentlal type and unit increase rate at variable z.

3 ASYMPTOTICS OF ZERO FUNCTION F

Let us find the asymptotic of zero functions F;.
From [3], the following is known to be valid

C1;(n) n Czjgn) Yo (Cziin)

Zpj =N+ ), n—oo, j=12 (134)

Therefore, we have

nCyj(n) nCZI(n)

sinmzy,; = (—1)"[ + +o0 (CZ’(n))] (13,)
2y SinTzy; = (—1)™* [nclj( ) + T g ()] (133)
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cosmzy; = (—1)" [1 + 0((C1’(n)) )]

(134)

We extend the function g from the segment [0, %] to zero, by the space [0, 7], and if we have

App = %fgé (6) cos 2n6d6

then the following is valid

o Cqj(n)
a(an) _( 1)n7t 2n+ (1J

—)
Similarly, if we have
bon = = [2 (6) sin 2n0d0

then we obtain

Cl] (n)

b(zyj) = (=)™ Zhyn + 0(-L—)

Next, let us have
. 2 (M2
N = ;f% 24 (6) cos 2n6do,
2 7"5—1 A .
by, = ;fz 24 (0) sin 2nHd6
2
then we obtain
A A 1 ~ ~ C1j(n)
a(znj) = (—1)"ga2n +o0 (Z)’ b(zn]-) = (—1)"+1§b2n +o0 (”T)

Next, the following is valid

sinnt

cos(m — 1)zp; = (—1)" cosnt + (- (- 7)Cyj(n)

sin(m — 1)z, = (=)™ ' sinnt + 0(%)

+ 0(—)

Also, if we have

~ 2 n,_z _ .
bg{l) == f% 211 (9) sin 2n6do
then we obtain
%) — n+1 ™ (1 §9) 1
b (zj) = (=1) b + o(n)

By using (13;), I = 1,10 we come to the following estimates

(135)

(136)

(137)

(13)
(13)

(1310)

Fj(znj) = (—1)”+1nC1j(n) + (—D"(h+ H) + (—1)”%005 nt + (—1)"nd,, +

I;(m—1) sinnt

s 1 -~
(D) Tl + [ (CDC (1) + (1) gy + (~1)M
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Ii(h + H; —h 1
+(=1)"+?! —1( > )smnr+( g 2 ——b,, + (- 1)" p<t 1)l +o0 (ﬁ) =0
Next,
h .
C1j(n) = +—HJ + I—lcos nt + dap +%&sz dop + i&m €l, (14,)
2
Czj(n) —ll(h—m’)( — 2m) sinnt — ( )sm2n‘r+ b(ll)
— by — h(;r—)sm nt(dyy + - aZn) (14;)
If we put
h + H; L o1 L(h+H)
$oj = g ]» C1=§: 51n=a2n+za2n' 771j=T21(7T—27);
_11(7T—T) —ib(l’i)_Hj_hB I 4 _11(”_T)
12 =T gg2 Mon = o 2n 5 I an =T 5 Sin
then we get
Znj=n+- ((0] + {4 cosnt + Zln) += (771] sinnt + n, sin 2nt + 772n) + 0(772" (145)

In this way we have proved the result:

Theorem 3.1. Eigenvalues A,,; of boundary problems (1,2,3,4;), j = 1,2 have the asymptotic
given with
Anj = n? + 2§y + 24, cosnt + 2{;, + % (2771}- sinnt + 27, sin 2nt + 2772n) + o("ZT") (15)

where we have 7n,, € l,, {4, € L.

4 SETTING THE INVERSE TASK

Let us have two series A,;, n € Ny, j = 1,2 of eigenvalues with asymptotics (15). If the
series A,; —n” oscillate, that is if I # 0, it is well known that the values 7, ;, h, H;, j = 1,2
are uniquely determined.

Next, we study the possibility of determining functions § and q.
Characteristic functions are constructed through Hadamard’s products, so the following applies:

F@) =t i (1 - D) (1-2), j =12 zec (16)

The process of constructing integral equations by functions ¢ i § is based on the following
identities

hH; . hH; .
(—z+ 7)51n nz + (h + H-) cosmz + 2d(z) + —b(z) +
Iy

+;(1—%)COS(T[—T)Z+ (1+—) ()+ (h+H)sm(7r—T)z+ 17)
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1 - b(“)(z)
+Z(Hj — h)b(z) — T atD(z) = Fi(z), j=12
Let us have
H,F,(z) — H{F,(z
A(z) =2 2F1(2) 1F( )+Zzsin7rz—2hcosnz
H, — Hy
B(z) = 2z w 2hsinmz — 2z cos iz

Identities (17) are equivalent with

5@ _ b0
z Z

4a(z)+ad(z)—h + I, cos(m— 1)z + %sin(n — 1)z = A(2)

- ~ q 11
4b(z) + b(z) — h% + ZaT(Z) + I;sin(t — 1)z — %cos(n — 1)z = B(2)

Then we carry out partial integration over quotients
First, we put

z z zZ

0"1(2) = [0 4 (6,)d6y) cos(r — 26)zd0

2

p'a(z) = ff‘g( ff 4 (6,)d6,) sin(rr — 26)zd6

2

_ T—
a'e"?(z) = f ( f Q@D (8,)d6,) cos(m — 26)zdb
2
1(1,1) T T
bl (2) = jT ( jT QD (6,)d8,) sin(mw — 20)zd6
2 2
The following relations are valid

@ _ sin(m—1)z

+2a!'i(z)
—2b"(2)

z —h
a(z) cos(m— ‘L')z
== o 2
z z
p@D(z) _ f‘[ -3 Q(1 1) (6) do sm(rc 1)z zallQ(l,T) (2)

zZ
2

= 200D (6) do —‘“’“’2‘”2 +2b12% ()

2

a®D(z)

It is clearly seen that the following is valid [, 2Q®D(8)d6 = 0.
Thus, the identities (18,;),1 = 1,2 obtain the following form:

44(2) + a(z) — 2ha'"i(z) — 2! (2) = C(2)

4b(2) + b(2) — 2hb™A(2) — 27" (2) = S(2)

sm(n )z

Here we have C(z) = A(z) — 2hl;

,» $(2) = B(2)

24
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Letus havetheset E = {m+iy, me N,, yE R} cC.
Since the set E has the finite accumulation points, according to Vitali’s theorem the system of
identity (19,),1 = 1,2 at C is equivalent to the system of identity at E.

Therefore,
Gm + iy) = [2(8) cos(m + iy) ( — 26)d6 =
= (-Dm [ fo %(El(e)ch(n — 20)y) cos 2mAde + i fo %(E]'(H)sh(n — 26)y)sin 2m9d9]
a(m+ iy) = (-1)™ [ fz"_g( §(8)ch(m — 20)y) cos 2mHd6 +
+i fz”_g( Q(H)Zh(n — 20)y) sin 2m9d9]
b(m + iy) =2(—1)m _ fog( §(0)ch(m — 20)y) sin 2modo +

+i fog( G(8)sh(r — 208)y) cos 2m9d9]

b(m+iy) = (-1D™ _ fzn_%(@(a)ch(n — 260)y) sin2m6do +

+i fz"_g( §(8)sh(r — 20)y) cos 2m9d9]

2

Besides,
Cim+iy) = a(my) +ip(m,y), S(m+iy) =y(my) +id(m,y)
Next, the following tags are used
a(m +iy) = (-D™[@5n () + b5 ()], bm+iy) = (D)™ [=b55, () + ids, ()]
a(m+iy) = (=D)™[asm () +ibsy, ()], b(m+iy) = (=D)™[-b5,(y) + iasn (¥)]

The identities (19;),1 = 1,2 are equivalent to the following system of identities

« A 15 1n(1,1)
4a5h () + agh (y) — 2hal, 1" (y) — 2ab,0 " () = (-D™a(m, y) (20,)
- ~ 14 15(1,1)
4bsh (y) + bst (y) — 2hby, " (v) — 2by, 2 () = (—1)™B(m, ) (20,)
- ~ 1a 11(1,1)
4bgh () + bt () — 2hby, 1" (y) — 2hby, e "(y) = ()™ ly(m,y)  (205)

« A 15 15(1,1)
4ash () + ash (v) — 2hal, " (y) — 2ha,l () = (—D)MS(my)  (204)

According to the asymptotics (15) it is easy to conclude that the right-hand sides of
(20,), 1 = 1,4 are from the space l,, in fact that Fourier’s coefficients of some functions from
L,[0, 7] are known. From (20,) and (205) we come to the following equation
. " 0 . 6 (11 f1(6.9)
44(0) +4(0) = 2h ¢ 4(6.)d6, = 2 [ QD (6:1)d0; = =0 (21,)

Accordingly, from (20,) and (20,) aty # 0 we also have
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* 5(0) — 05 _2(?paD _ L0y
44(6) +q(0) — 2h fg 4(61)d6, zfg Q™ (61)do; = sh(r—26)y

From (21,) and (21,) we obtain the following

fl(ery) _ fz(O,y) _
ch(m-20)y  sh(m-20)y f(0), 6 €[0,],

where equality is implied in terms of L,.

In this way we have proved and important result:

(213)

Theorem 4.1. In order for functions g, § to be parameters of operators Dj2 (G = 1,2) whose
eigenvalues are given, it is necessary and sufficient for them to be the solutions of the equation

44(6) +q(6) — 2h [ 4(6,)d6; — 2 [ QD (6,)d6; = £(6)

5 SOLVING THE EQUATION (22)

For 6 € [0, ﬂ the equation (22) becomes the identity

44(0) = f(6),
that is
q)p(x—1) = %f(g), x € [0, 1]

For 6 € Gn — %] the equation (22) reduces to the following equation

/]
30) = £(6) + j [2h4(6,) + 200D(6,)]d6,
2
or

a(6+3)=f(0)+ j; [2hg (61 +3) +2040(61)] a6,
2

qx) =f (x — %) + fo [th(xl) +2Q@D (x1 - %)] dx,

Since we have

2x1—T T
f 4(t)d 2t — 2x7)dt, — G(2%; — 20)
Q(LT) (xl _ E) _ )7 2x,-T

2 T 5 T+T
L f q(t1)q(2t; — 2x1)dtq, X1 € (
X1

2

, ]

the equation (24) is divided into two equations

26

T+T
q(ty)dty, x; € [T, ]

(22)

(23)

(24)
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q(x) = f(x - %) +L [2hq(x1) +
+ [T q(t)qt - 22) = G2x, - 20) [, __q(t) dty|dxy, x € (1,75 (25)

q(0) = f (x =3) + [T [2hq(x) + QD (3, —7)| dxy, x € (57, ] (26)

or

qx)=f (x — %) + fthq(xl)dxl +

i _ T 71' 71' _ T
+fr QD (x1 — E) dx; — Zth q(x)dx; — Jx QD (x1 — E) dx,
Since we have  ["q(xy)dx; =1, and [ Q®D (xl - g) dx; =0 if we put

i) =f (x — %) + 2hl; the equation (26) is equivalent to the equation

() = A6 + [ [2haCen) + [} a(6)d(2t, — 2x)dt | dxy @7)

The equation (27) is Volterra’s non homogenous linear integral equation of g function,
since g is a known function.
Let g,(x) be the unique solution of the equation (27).
Let us now return to the equation (25).
We can write the following

qG) =f(x—2)+

2
ETH 2x1—T T
| [thm) + 7 aacn - 2wdn - 4@x - 20 q(tl)dtll dx, —
T X1 2x1—-T
ETH 2x1—T T
- [th(xl) + 7 aacen - 2wdn - 4@x - 20 q(tl)dtll dx;
X X1 2x1—-T

T+T

Slﬂce we have ITTth(xl)dxl = Zh (11 - f& q1 (xl)dx1>
and ’

T

T+T
2 2x1—7T
f [f q(t1)q(2ty — 2x,)dty — §(2x, — 27) Q(t1)dtll dx; =
T X1

le—T

LY

= _J,HTJ q1(t1)q(2t; — 2x1)dt,
= n

therefore, we get

a@ =f(x—3)+

27
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+2h <11 - fnTHq1(x1)dx1> - LT_H L1q1(t1)6(2t1 — 2xy)dt dx; —
T+T

T 2x1 T
_f thQ(x1) + f q(t)q2t; — 2x1)dt, —G(2x, — 27)
x X1

Q(tl)dt1l dx;

2x1—-T

+ +3 .
From 2x; — 7 <28 & x, < 22T \we can write
1 2 1 4

2x1—-T
j 4602t — 2x)dt, =
X1

T+3T

:L4

2x1—T
q(t)q(2t; — 2xy)dt; + .];T+3T q1(t1)q(2t; — 2x1)dt,

1 4
and
T+T
T T T
G(2x; — 27) q(t))dt; = §(2x, — 27) q(ty) dt; + §(2x; — 27) ,LH q1(t1)dty
2X1—-T 2X1-T —
Let us put

L@ =f(x-3)+

+2h (11 Jn ql(xl)dx1> f f q:1(t1)G(2ty — 2x,)dt, dxq —

T+T P
f [f q1(£)G (2t — 2x1)dt, + G(2x; — Zf)f Q1(t1)dt1] dx,

The equation (25) is equivalent to the following equation

q(x) = f(x) -

T+T T+T

- f:% 2hq(x,) + fxlT q(t)q(2t; — 2x)dt; — G(2x;, — ZT)f : q(tl)dtl] dx; (28)

Thus, we obtain a linear integral equation of Volterra’s type.
If we write (28) in the operator form

m+T

q = Aq, qELZ[TT

then for
q®,q® € L, [ Tt

we get

|(49® - 4¢D) ()| < 3M( - 02| — @)
M = max(2|hl, 131}, v =57 y—x <1

28
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3
(42¢® — A2q™) ()| < (3M)z@||q(z) —qW||

2
5
(43q® — 43qW) ()| < 3M)* L2 X)z l¢® — q@||
EE

Induction easily proves that the following is valid

|(Amq®@ — Amq D) ()| < (6M)™ =22 [|g@-q®|

(2m+1)"

Therefore,
m 2
|4mq® — amq®|| < (GBL)( - )"” lg® - q@||

2m+1)!!

which means that A™ is the clamp operator , wherever m is large enough. This means that

there is a unique solution for g, (x) of the equation (28) at space [r =

This is how we have proved the basic result:

Theorem 4.1. Using two sets of eigenvalues 4,; obtained by varying boundary conditions at
the righthand end of the space [0,m] under the condition I, # 0, the parameters
T,h,Hy,Hy, q(x)(x — 1), x € [0,7] and q(x), x € [t,m] are uniquely determined.

6 CONCLUSION

The aim of the research but also the motivation of this paper is to contribute to the
development of inverse spectral theory for operators with deviation. Some results concerning
the inverse spectral problems for the classical operator are given in the literature, as well as the
results related to different types of delay.

Here, the direct and inverse boundary value problem of the Sturm-Liouville type with constant
delay and non - zero initial function is observed and studied. Using the condition, we solved
the inverse problem and took one step in the development of this theory.
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