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Summary. The technique of Monte Carlo modeling of radiation-induced electric currents in 

heterogeneous finely dispersed medium with direct consideration of their microstructure is 

worked out. The main attention is paid to developing the method of the construction of a 

geometric model of the polydisperse structures. The method based on random tracing 

algorithm is intended for implementation on heterogeneous computing clusters with using the 

graphical processors and the CUDA parallelization of calculations. The geometric model 

includes a detecting system for statistical evaluation of the desired physical quantities (electric 

current density). A computational experiment was performed to study the basic regularities of 

generation of electrical currents arising in polydispersed mfterial being under X-radiation. 

The results of the experiment showed the irradiation of the object under study produces 

electric currents with a sharply inhomogeneous spatial structure. Inhomogeneities occur near 

the boundary surfaces between the binder and inclusions. 

1 INTRODUCTION 

Heterogeneous materials of finely dispersed structures are widely used in mechanical 

engineering, heat power engineering, rocket, aviation, chemical and other industries. This is 

because these materials provide the required strength, thermal, hydraulic, technological 

properties and can operate at high temperatures and pressures. Such materials are used, for 

instance, in protection of structures from intensive energy flows [1], creation of solid 

propellants [2, 3]. 

Investigation of radiation-induced electrical effects in heterogeneous finely dispersed 

media is very actual for researching the protective and functional properties of such media 

being under radiation [4-9]. Heterogeneous dispersed structures are the materials having huge 

number of inner boundaries between homogeneous components. The presence of these 

boundaries leads to generation of electrical phenomenon due to the lack of electronic 

equilibrium near them [10-12]. 

Mathematical modeling of radiation-induced electrical effects in finely dispersed media 

involves the development of radiation transport simulation algorithms as well as the 

construction of a geometric model of a substance with a direct resolution of its microstructure. 

The transport of radiation in heterogeneous materials of complex geometric structure is 

cascade process and characterized by the fact that the particle pathways are comparable with 

the size of the inhomogeneities of the medium. In this situation, a detailed simulation of each 

collision of radiation particles with atoms of the medium is required [13]. Statistical 
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algorithms of radiation cascade transport modelling are worked out considering the features of 

radiation transport in finely dispersed media [14, 15]. 

The main attention in this work is paid to the construction of a geometrical model of a 

dispersed structure. The model includes the detector (registration) system for statistical 

estimation of the electrical current in an irradiated object. 

Various algorithms can be used to construct a geometric model of the material (placement 

of microstructure particles with specified geometric properties inside the sample). The most 

popular of these is the algorithm of Lubachevsky-Stillinger [16-18]. The algorithm simulates 

the process of mechanical compression of a set of solid particles. There are other techniques 

for construction of geometrical model of materials in question [19, 20]. 

These algorithms are poorly parallelized on GPUs due to their complex internal logic and 

therefore cannot be integrated into common code designed for heterogeneous computing 

clusters (HCC). 

A method of creating the geometrical model of the irradiated object based on ray-tracing 

algorithm [21] is worked out in this work. The method has almost unlimited scalability and is 

easily implemented on the graphics subsystem of the HCC. 

The developed code for supercomputer simulation of radiation-induced electric currents in 

heterogeneous dispersed materials with direct consideration of their microstructure is 

implemented on heterogeneous computing clusters. 

The results of a computational experiment to calculate the current density in a fragment of 

finely dispersed material show that electric currents with a sharply inhomogeneous spatial 

structure are formed during irradiation of the object under study. Inhomogeneities occur near 

the boundary surfaces between the binder and inclusions. 

2 GEOMETRICAL MODEL OF THE FINELY DISPERSED STRUCTURES 

Base characteristics of the dispersed medium are the size of suspended particles in 

dispersed systems and dispersity (relative volume fraction of suspended particles of every 

type). It is assumed in this paper that all particles of given type are of the same size. 

The geometric model also includes a model of the detector system for the statistical 

evaluation of the required physical quantities (electrical current). The detector system 

intended for the statistical estimation of functionals on the space of solutions of the transport 

equation includes a set of “detectors”, spheres of a specified size and location within which 

the events of the interaction of the radiation quanta and the secondary particles with the 

material are recorded. 

The detectors must be isolated from each other (should not intersect) and the entire volume 

of the detector should be inside the given matter (in the context of the considered media, they 

should not “capture” the boundaries between homogeneous components). 

It can consider the model of the dispersed matter with the detectors as a polydisperse 

medium consisting of some types of solid nonoverlapping objects (inclusions): suspended 

particles and detectors. However, several detectors may be inside a single particle. 

Let some object be a polydisperse medium consisting of a binder and N types of suspended 

spherical particles of radius rn (n=1,…,N). 

The developed algorithm for creating a geometric model has the following structure. 

Initially, the placement of inclusions of the 1
st
 type is constructed. 

1. The coordinates (Xmin, Ymin, Zmin) and (Xmax, Ymax, Zmax) of the object are determined; 
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2.    1 2

max min max min 1

n

x nM Z Z Y Y r

     beams are drawn from a random point on the 

plane x=Xmin along the X-axis;    1 2

max min max min 1

n

y nM Z Z X X r

     beams are 

drawn from a random point on the plane y=Ymin along the Y-axis and 

   1 2

max min max min 1

n

z nM Y Y X X r

     beams are drawn from a random point on the 

plane z=Zmin along the Z-axis; 

3. The intersection points of the beams with boundary surfaces of homogeneous parts of 

the object are calculated (fig. 1). 

4. A random point (center of a particle of 1
st
 type) on every interval between two 

consecutive intersection points (segments 1-2, 3-4 and 5-6 in fig. 1) is played. 

The next stage of the algorithm is to filter (exclude) particles according to the following 

criteria. 

- The particles should not intersect the boundary surfaces of the homogeneous parts of 

the object (if intersection takes place, particle is excluded from corresponding set); 

- The particles must be isolated from each other. 

Elimination of mutual intersections of detectors is carried out by using the following 

method. 

- It is built a graph on the set of constructed points (centers of the inclusions). The nodes 

of the graph are the centers of the particles. The edges of the graph are constructed 

between two nodes for which the distance between the centers of the particles is less 

than 1 12 n nr S   (Sn=1 is special value that restricts the minimum distance between the 

particles); 

- The node of the graph having the maximum number of edges is defined. It is excluded 

from the graph (fig. 2). 

Last step is repeated until there are no edges left in the graph. 

The algorithm is repeated with additional beams if a number of inclusions is less then 

requiered. 

The set of detectors is constructed after the geometrical model is built with inclusions of all 

types. The developed algorithm is used for the construction of the detector set but there is one 

 
 

Fig. 1. Scheme of particle placement algorithm Fig. 2. Scheme of particle excluding 
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exception. Some of the detectors may be located entirely inside the inclusions to estimate the 

desired value in suspended particles. 

A fragment of geometrical model consisting of epoxy binder, metal or dielectric inclusions 

(blue spheres) and a set of detectors (magenta spheres) is shown in fig. 3 (the image is 

enlarged for clarity). 

All inclusions are closed, but appear cropped due to image magnification. 

3 MODELING OF THE RADIATION TRANSPORT 

The complicated process of particle transport through the matter can be represented by a 

sequence of elementary processes of the interaction between the particle and the atoms of 

matter (particle trajectory). These processes include the scattering, braking or disappearance 

of the particle due to absorption or escape from the considered system (from the object). This 

representation is convenient for modelling the radiation transport by the Monte-Carlo method. 

The transport of the particles accompanied by the birth of secondary particles in cascade 

processes of the interaction of the radiation with matter is described by a system of integral 

equations. 

   1 1,Q Q k x x Q x dx Q KQ      . (1) 

Here  r Ωx E , , , where r,Ω,E  are coordinates, direction of motion and energy, 

respectively;  Q x  is the density of collisions and  1Q x  is the density of the first collisions; 

 ,k x x  is the kernel of the integral operator and has the meaning of probability density of 

x x   transition. 

 

Fig. 3. A fragment of geometrical model constructed by use of developed algorithm 
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Equation (1) is true for every type of particles of cascade. The previous generation particle 

flux is the next generation particle source. 

The objective of the radiation transport theory is to compute the readings of detector 

located in the field of radiation. The desired (measured) values are presented as the readings 

of some detector and are written as functional on the space of the transport equation solutions. 

We consider such registering facilities (detectors) whose readings are equal to the sum of the 

contributions of some particle’s collisions in a sensitive volume of the detector (additive 

detectors). To evaluate the desired measured value by the Monte Carlo method, the random 

trajectories of the particles are simulated (fig. 4). 

The contributions of these trajectories to the detector’s measurable value are summed up. 

The particle trajectory construction is performed according to the chosen physical model of 

the interaction between the radiation and matter. 

Trajectories are simulated using the individual computational algorithms for each type of 

particle considering their physical properties [13]. 

The developed algorithm is described in detail in [15]. 

4 RESULTS OF THE COMPUTATIONAL EXPERIMENT 

This section presents the results of computational experiments on simulation of radiation-

induced electric currents in heterogeneous materials of finely dispersed structure. 

A fragment of dispersed structure (fig. 5) is considered for researching the basic features of 

the current generation process in an object being under radiation. The cubic fragment of 0.003 

cm size consists of binder (epoxy resin, density is about 1 g/cm
3
) and one spherical inclusion 

(ammonium perchlorate, NH4ClO4, density is about 2 g/cm
3
) of 0.002 cm diameter. The 

studied fragment is irradiated by photons of 20 KeV energy in the direction of the Z axis. 

4.1 The main regularities of the generation of radiation-induced effects 

The distribution of fields of radiation-induced effects (heating, charge effects, electric 

currents) is determined mainly by the number of electrons born and their penetrating power. 

The first value is proportional to the macroscopic cross section of the interaction of photons 

with matter, and the second is proportional to the braking path of electrons. The dependence 

of these values on the energy of the radiation particles is shown in fig. 6, 7. 

These figures show that in inclusion, the macroscopic cross-section of the interaction of 

photons significantly (up to two orders of magnitude) exceeds this value for the binder. 

Therefore, much more electrons are born in the inclusion than in the binder. The penetrating 

 

 

Fig. 4. Particle trajectory Fig. 5 A fragment of dispersed material 
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power (braking distance) of electrons, on the contrary, is noticeably greater in the binder. 

The generation of electric currents in a substance being under gamma-or x-ray radiation is 

caused by the fluxes of photo and Compton electrons generated as a result of the photo-

electron cascade processes in the material under study. 

Current components for which there is no electronic equilibrium, that is, electron flows 

along the direction of this current component and in the opposite direction do not compensate 

for each other, will be different from zero at a given spatial point. The photon flux propagates 

along the z axis in the computational experiment under consideration, so the transverse (x, y) 

components of the current will obviously be negligible in a homogeneous medium. 

The electron braking distance does not exceed 4 microns, and the number of collisions 

reaches tens and hundreds in the studied fragment of heterogeneous material. Therefore, at the 

periphery of the fragment (at 2-4 microns from the inclusion boundaries) in the binder, the 

absence of transverse current components should be expected. 

Another situation is realized near the interface of two media with different physical 

properties (density, cross sections, braking paths) on spatial scales of the order of the electron 

path. The concentration of electrons born in the inclusion is much greater than in the binder. 

  

Fig. 6. Microscopic cross sections Fig. 7. Braking paths 

 

Fig. 8. Electron fluxes from and into the inclusion 
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In addition, electrons emitted from the inclusion into the binder have a much greater 

penetrating power than electrons moving in the opposite direction (fig. 8). 

Therefore, uncompensated electron fluxes arise near the boundaries of two media and the 

direction of the electron fluxes is from the inclusion into the binder. This direction is due to 

the predominance of electron emission from inclusion in the binder over emission in the 

opposite direction [23]. 

4.2 Results of the modeling of radiation-induced electrical current 

The fig. 9-12 below show the spatial distributions of the amplitude of the transverse 

components Jx and Jy of the current in the irradiated fragment. These figures show the 

amplitudes of the electric current density in CGSE units per 1 photon/cm
2
. 

The fig. 9, 10 show graphs of the transverse components along straight lines {z=0.0015 

cm, y=0.0015 cm} and {z=0.0015 cm, x=0.0015 cm} respectively. Dotted lines mark the 

boundaries of the inclusion. 

The transverse components of the current are negligible along the longitudinal axis 

{x=0.0015 cm, y=0.0015 cm} passing through the "poles" of the inclusion. 

Spatial distributions of the transverse components Jx and Jy in the plane z=0.0015 cm are 

shown in Fig. 11, 12 in the form of the surfaces. 

  

Fig. 9. The transverse component Jx Fig. 10. The transverse component Jy 

  

Fig. 11. 2D image of the component Jx Fig. 12. 2D image of the component Jy 

71



M.E. Zhukovskiy, M.B. Markov, R.V. Uskov and L.V. Kuznetsova 

 

In General, these figures demonstrate the expected symmetry of the distribution of the 

transverse components of the current relative to the corresponding coordinate axes. 

Fig. 13, 14 show the spatial distributions of the longitudinal (along the direction of the 

photon flow) component of the current Jz. The component Jz in the plane x=0.0015 cm is 

shown in Fig. 14 in the form of the surface. 

The component Jz reaches the maximum value at the boundary of the two media because 

the electron emission from the inclusion into the binder is much more intense than in the 

opposite direction (fig. 8). The background longitudinal component of the current is generated 

at the periphery of the binder (at a distance from the boundary surfaces exceeding the braking 

path of the electron). Its value is significantly less than one of the inclusion-binder 

boundaries. 

  

Fig. 13. Jz component along the longitudinal axis 

{x=0.0015 cm, y=0.0015 cm} 
Fig. 14. 2D image of the component Jz 

  

Fig. 15. Jz Fig. 16.  J=Jx+Jy+Jz 
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Vector field of the current in the binder near the boundary surface inclusion-binder is 

depicted in fig. 15 (Jz) and fig. 16 (J=Jx+Jy+Jz). 

These figures demonstrate the expected asymmetry of the electric current distribution with 

respect to the z=const plane passing through the center of the inclusion. 

5 CONCLUSION 

The technology of supercomputer simulation of radiation-induced electric currents in 

heterogeneous dispersed materials with direct consideration of their microstructure is 

developed. The main attention is paid to the creation of an algorithm for constructing a 

geometric model of a polydisperse medium, which is intended for implementation on 

heterogeneous computing clusters. The geometric model includes a detecting system for 

statistical evaluation of the desired physical quantities (electric current density). 

The results of a computational experiment to calculate the current density in a fragment of 

finely dispersed material show that electric currents with a sharply inhomogeneous spatial 

structure are formed during irradiation of the object under study. Inhomogeneities occur near 

the boundary surfaces between the binder and inclusions. The generation of a current at the 

boundaries between two media is caused by the predominance of electron emission from the 

inclusion (a material with a large macroscopic cross-section of photons) in the binder (a 

material with a greater penetration of electrons) over the emission in the opposite direction 

(Fig. 8). Only the longitudinal component of the current (along the direction of the photon 

flow) is present in the binder at more than the length of the braking distance from the outer 

surface of the inclusion. Its value is much smaller than the amplitude of the current near the 

binder-inclusion boundary. 
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