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Summary. The work considers application of Runge-Kutta Discontinuous Galerkin method for 

solution of Godunov-Romenskii type hyperbolic model for hyperelastic medium. The medium 

is considered inhomogeneous with piecewise uniform distributed properties. To describe 

evolution of medium Godunov-Romenskii model is used supplemented with transport equation 

that describes evolution of properties distribution. The numerical approach is based on 

application of Runge-Kutta Discontinuous Galerkin method with Godunov type fluxes both for 

conservative and non-conservative terms. We describe mathematical model and corresponding 

numerical algorithm briefly. Results of numerical simulations are presented. 

1 INTRODUCTION 

The present paper is devoted to numerical study of Runge-Kutta Discontinuous Galerkin 

(RK/DG) method of high order of accuracy for solution of first order hyperbolic system of 

equations of hyperelasticity.The model describes dynamics of continuous media (deformation 

and strain fields, velocity, temperature and entropy) in Eulerian reference frame. The model 

was originally proposed[1] by S.Godunov and E.Romenskii. Recently there has been a 

significant increase in interest in such type of the models since it is assumed that in some cases 

they are more suitable (comparably to traditional models based on arbitrary 

Lagrangian-Eulerian description) to simulation of physical phenomena involving extremely 

large deformations of the media[2, 3]. Such type of problems are often arise in numerical 

simulation of shock wave phenomena in solids induced by rapid mechanical, thermal or 

radiation loads[24, 25]. 

Currently, a number of papers is devoted to numerical solution of hyperelasticity model[4, 

5]. However, the most of them considers WENO-based approaches[6, 7]. In present work 

Runge-Kutta Discontinuous Galerkin method[8] is considered. The general motivation for such 

a choice is its universality and possibility of generalization to higher-order equations, that may 

occur in the multiphase problems. The second reason is to estimate efficiency of the RK/DG 

method when simulating Godunov-Romenskii model for particular cases of more simple (gas 

and fluid dynamics) and more complex (inhomogenious hyperelastic medium) settings. Both 

issues can be considered as a preliminary tests for further development of RK/DG numerical 

techniques for complex multiphase and multicomponent models developed in, e.g., 

Baer-Nunziato framework[9]. 

The main features of present paper are: 
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 first order hyperbolic hyperelastic model is considered as a unified framework to 

describe solid/liquid/gaseous media; 

 heterogeneous elastic medium case which assumes piecewise uniform distribution of 

medium properties is considered . 

The structure of the paper is as follows. The basic Godunov-Romenskii hyperelastic model 

is described at the beginning of the section 2. In the subsection 2.1 its simple generalization to 

the case of piecewise homogeneous case is considered. Section 3 is devoted to the description 

of the RK/DG numerical algorithm for both conservative and non-conservative hyperbolic 

equations. In section 4 the implementation detalis and results of numerical experiments are 

presented. 

2 MATHEMATICAL MODEL 

 To describe dynamics of the continuous hyperelastic medium in the Euler reference frame 

the Godunov-Romenskii model[10] is used. The corresponding system of equations is 

hyperbolic and consists of conservation law of momentum (1), dynamic equations for distortion 

tensor components (2) and conservation law of energy (3): 
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Here T  is Cauchy stress tensor, 2= | | /2E  uU  – total energy,  = ,FU U S  – internal 

energy. The primary variables are components of distortion tensor = 
X

F x  ( x  and X  are 

Euler and Lagrange coordinates of medium points, respectively), velocity u  and entropy S . 

Symbol “ ” denotes the tensor product. The medium density   is defined as 

 0= / det ,  F  (4) 

where  0 0=  x  denotes the density of undeformed medium. The combination of equations 

(2) and (4) recovers the continuity equation: 

  = 0.
t





 


u   

This equation can be used instead of one of the equations in (2) for the distortion tensor 

components. 

System (1)-(3) has to be closed by the specific internal energy (equation of state, EOS) in its 

canonical form,  = ,FU U S . To provide the frame indifference of internal energy it must be 

expressed in terms of some symmetric strain tensor G [10, 5]: 
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   ˆ= , = , .F GU U S U S  (5) 

Here and further ˆ, , ,U U U  denote functional dependencies of the same variable on 

particular set of arguments. 

A number of strain tensors[10, 11] can be used in (5). In the present work the Finger tensor 
1= T 

G F F  is considered[4]. In this case the Cauchy stress tensor T  is expressed by 

Murnaghan formula[10]: 

ˆ
= 2 .


 


T G

G

U
 (6) 

Since Û  is a function of Finger tensor components it can be expressed, due to objectivity 

arguments, as a function of its invariants 1,2,3I : 

 1 2 3= , , , ,I I IU U S  (7) 

       
2 2

1 2 3= , = / 2, = det .I tr I tr tr I 
 

G G G G   

The internal energy U  can be considered as the sum of two terms. The first one, hU , is 

“hydrodynamical” part that depends only on bulk deformation and the second one, shU , 

describes dependency on shear deformation: 

   h sh

3 1 2 3= , , , , .I I I I U U S U S  (8) 

Hereafter the isotropic hyperelastic EOS[4] is used: 

      
2

h /2 /20

3 3 0 32
, = 1 exp / 1 ,

2
V V

K
I I c T I c 


  U S S  (9) 

   sh /2 2

1 2 3 0 3 1 2, , = / 3 / 2.I I I B I I I U  (10) 

Here  2 2

0 0 0= 4 / 3K c b  is the squared bulk sound velocity, 
0c  is sound velocity, 

0b  is 

shear elastic wave velocity, 2

0 0=B b , 
Vc  is the volumetric heat capacity, 

0T  is reference 

temperature,  ,  ,   are constant parameters. 

The considered model can describe both solids ( 1,2,3/ 0I  U ) and liquids/gases (

1,2 3/ 0, / 0I I      U U ). In the latter case the system of equations (1)-(3) can be reduced 

to classical gas dynamics equations with only bulk deformation accounted. That can be done by 

replacing the equations for distortion tensor components (2) with mass conservation law. 

2.1 Piecewise homogeneous model 

Consider now spatial domain   occupied by piecewise homogeneous medium. The latter 

means that parameters of EOS (9), (10) are different in different subdomains (phases) of  . 
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Let ,  = 1,k fk N where fN  is number of phases, be such subdomains, 

= ,  1, fk k N   . Let = ( )k k  X  be characteristic functions of 
k : 

k

=1k
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( ) =  = 1, ;     ( ) = 1.

0, ,
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k f k

k
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X

 (11) 

Set of EOS parameters specific for subdomain 
k  is defined as  ( )

0= , , , ,k K  a , 

= 1, fk N . The EOS in that case has the form  ( )= , ; k

k k G aU U S  in domain 
k . Then the 

distribution of medium property in the Lagrangian reference frame is defined as  

( )

1

( ) = ( ).
fN

k

k

k




a X a X  (12) 

During deformation of the medium, the values of characteristic functions  ˆ ˆ= ,k k t  x  in 

Eulerian reference frame satisfy the following equation:  

ˆ ˆ
= 0,k k

t

  


 
u

x
 (13) 

where  , tu x  is velocity defined as a function of Eulerian coordinates. Equation (13) should 

be supplemented by appropriate initial conditions. 

Further we do not use characteristic functions ˆ
k  but rather their “smoothed” version. The 

smoothed zone width is a parameter of the model and is resolved by the computational mesh 

used in simulations. Equation (13) is nonconservative and is solved together with 

hyperelasticity model equations (1)-(3). 

Considered above inhomogeneous model assumes that only one EOS is used to describe 

behavior of all phases, – that is, it is not “real” multiphase model. However, it has a number of 

features of multiphase models: e.g., it consists of two groups of equations (conservative and 

nonconservative)[12, 9]. In present work this model is considered as the simplest one to test and 

verify algorithmic techniques for numerical solution of more complicated models. 

3 NUMERICAL ALGORITHMS 

The considered class of problems is described by the hyperbolic system of equations of the 

first order. The total number of equations is large (13 equations of hyperelastic model plus fN  

equations for k ), and its solution has a rich wave structure. The system consists of 

conservative and nonconservative equations. Its possible generalizations include spatial 

operators of higher order (for example, when considering surface tension). This motivates the 

following requirements for numerical methods: 

 The method must be capable for calculations with high approximation accuracy. 

 It has to provide possibility to construct numerical approximations of the hyperbolic 

operators as well as of diffusion ones. 

 It can be applied in conservative and nonconservative settings. 
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 It should provide unified framework when considering both theoretical and software 

implementation issues. 

We consider RK/DG as a candidate for such a framework. Further we briefly describe it for 

both conservative and nonconservative cases. 

Conservative case. Consider one-dimensional conservation law in spatial domain 

= [0, ]L  R : 

    ,,
= 0,

g x tg x t

t x




 

F
 (14) 

where  ,g x t  is conserved quantity and  gF  is corresponding physical flux. 

Let  
=

=0

i N

i i
  be a partition of   into computational cells, and  1/2 1/2= , ,1i i ix x i N   „ „ . 

We shall denote by  k

h V  the space of elements of   L  whose restriction to 
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to a vector space  k

iP  of polynomials of degree k : 
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i
l
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i  by its approximation 
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k
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i

l
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In order to obtain the semidiscrete equation for function  ,hg x t  we multiply equation (14) 

by test function k

h hv V , integrate over 
i  and apply Green’s formula: 

 
    

 
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,
ˆ, , = 0.
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In equation (16) physical flux   ,hg x tF  is replaced by numerical flux   ˆ ,hg x tF  in 

surface integral. In one-dimensional case one can obtain: 

   1/2 1/2 1/2 1/2
ˆ ˆ ˆ= .h i h i i h i

e ei

v d v x v x


 

   



  F F F  
 

Here 1/2
ˆ
iF  is numerical flux at ix  .  

 1/2 1/2 1/2
ˆ ˆ= , ,i i ig g 

  F F   

where 1/2ig 

  and 1/2ig 

  are left and right hand side limiting values of hg  at ix  . 

Different numerical fluxes for hyperbolic hyperelastic models are known (including HLLC, 

HLL, etc.)[4]. We consider here only two options: 
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1. Lax-Friedrichs flux: 

     LF
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2. Rusanov flux: 
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here  

   1/2 1/2 1/2 1/2= , = max | |,| | ,i i i ig g     
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where 1/2i


 , 1/2i


  – eigenvalues of Jacobian matrices 1/2( )iJ g 

 and 1/2( )iJ g 

 , 

 ( ) = /J g g g F . 

Considering test functions in the form     
=

=0
=

l k
l

h i
l

v x   the following system of ordinal 

differential equation is obtained for vector of coefficients  
=

( )

=0
ˆ =

l k
l

i l
gg : 

ˆ
ˆ= ( ).

d

dt

g
M g  (17) 

For time discretization of (17) a strong stability preserving TVD/RK3 method[8] is used. 

The appropriate limiting procedure (see below) is applied at each Runge–Kutta stage. 

Nonconservative case. Let us describe now the RK/DG method applied to the nonconservative 

equation (13) in spatial domain = [0, ]L  R . 

For (13) the traditional approach can not be applied in the same way as it was done 

previously for conservative case. The main cause is the difficulty of the definition of the 

solution  ,g x t  in terms of distributions. The correct formulation of the Riemann problem 

and corresponding generalized Hugoniot conditions can not be set in traditional way. The 

constructive solution to this problem is provided by DLM (DalMaso–LeFloch–Murat) 

theoretical framework[13]. 

Consider the discontinuous function 

l d r( ) = ( ) ,g x g H x x g    

where = ( )H H x  is Heaviside function, dx  is the discontinuity coordinate, 

 , = 0r l dg g x   are the right and left-hand solution limits, respectively. For this case the 

expression 

 , ,
g

a x g
x




 (18) 
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where function  ,a x g  has the discontinuity at the same point 
dx , can not be defined 

correctly as distirbution[14] and the special treatment is needed as developed in DLM theory. 

To proceed, replace g  by its smooth regularization g : 

 

l d

d

d d

r d

, < ,
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g x x
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where > 0 , mapping 
l r: [0,1] [ , ]g g  is Liepshitz continuous and is called path[13]. 

Now define non-conservative product (18) as 

d

( , ) = lim ( , ) ,
x x

gg
a x g a x g

x x








 
  

In such a way at 0   the product (18) can be defined as bounded Borel measure, 

converging to (18) in  -weak topology: 

1

d

0

( )
( ) ( ), = ( ( )) ,

g
a g C x x C a d
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



  



 
  

   (19) 

where  x  is Dirac delta-function. 

Consider again spatial domain = [0, ]L  R  with given partition  
=

=0

i N

i i
 . Define the 

space of boundary points  = : , = 1,ix x i N  . Introduce the piecewise polynomials 

space k

hV  as was done previously. Multiply (13) by test function k

h hv V  and integrate it over 

  taking (19) into account. This leads to the following semidiscrete equation for k

h hg V : 

     
1

0

, ( ) = 0,h h

h h h h x
x

i i

g g
v dx a x g v dx v a d

t x 

  
 

  
  

  
      

where  r l= / 2h h hv v v . Borel measure (19) depends on the choice of the path  . In the 

present work the linear path    r l l= g g g     is chosen[13]. Further one can proceed as 

in the conservative setting. 

Limiting procedure. For considered method the numerical solution will not be monotonic in 

case of discontinuous solution. To avoid non-physical oscillations in numerical solution an 

artificial dissipation has to be introduced. It can be done in various ways, among which methods 

based on geometric limiting, explicit introduction of additional dissipative terms and 

algorithms based on high-pass filtering component of the solution are known [15]. In
 
[16] 

method for monotonizing the solution by explicitly introducing von Neumann-Richtmeier type 

artificial viscosity is described. The most popular technique is to use geometrical and 

moment-based limiters such as maximum preserving limiter[17], minmod limiter[8], or 
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Krivodonova limiter[18]. In the present work we use maximum preserving limiter for 

concentration function in nonconservative transport equation (13) and Krivodonova moment 

limiter for hyperelastic model (1)-(3). 

4 NUMERICAL RESULTS 

The described algorithm was implemented as program code using C++ language. The 

feature of software implementation is usage thermodynamical potential with its natural 

variables as EOS. For appropriate medium properties calculation the automatic differentiation 

technique is used (STAN[19]). Thermodynamical parameters (stress tensor, acoustic tensor, 

temperature, entropy, etc) are obtained directly from thermodynamical potential without 

numerical approximation of its derivatives. The developed program also uses libraries 

BOOST[20] and EIGEN[21]. 

In present section the numerical results for Godunov-Romenskii model are given for 

homogeneous and heterogeneous medium testcases. The well-known model tests for solid and 

gaseous phases are considered. In the examples below, initial value problems are solved in a 

computational domain = [0,1]  cm. The position of the discontinuity in the initial data is 

= 0.5x  cm. 

4.1 Homogeneous case 

Gas dynamics. As mentioned above, Godunov-Romenskii model can describe gas flow 

assuming that EOS is chosen in a proper way. This approach is used here to solve the 

well-known Sod shock tube problem[22], adapted for hyperelastic model setting. Complete 

hyperelastic model with 13 equations for variables  , ,k iju F S  is considered instead Euler 

ideal gas dynamics system with 5 equations[23]. 

Mesh step is 0.001  cm. Time step is 0.01  sec. The piecewise polynomials inside each cell 

are up to third order. As it is mentioned above, EOS consists of only hydrodynamical term (9) 

    h /2

3 0 3= , = exp / 1 .V VI c T I c U U S S   

with 3

0 = 1.0 g / cm  being initial density, 6= 1.0 10 kJ / (gK)Vc
  – heat capacity, 

0 = 100KT  – reference temperature, 0 = 0.0km / sb  – shear wave speed and = 0.4  – 

constant parameters. 

Distortion tensor coefficients and entropy values are chosen in such a way that they 

correspond to the parameters of the Sod problem for Euler equations. The initial state 

corresponds to Riemann problem with two constant states:  

6

l l l

0 1 0 0
km kJ

= 0 , = 0 1 0 , = 4.0 10 ,
s gK

0 0 0 1



   
   

   
   
   

u F S   

6

r r r

0 8 0 0
km kJ

= 0 , = 0 1 0 , = 1.7 10 ,
s gK

0 0 0 1



   
   

   
   
   

u F S   
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where indices “l” and “r” denotes left and right states, respectively. 

Figure 1 shows various state dimensionless profiles at time  = t 0.6 sec. The results are fully 

identical to gas dynamics ones[23].  

 

Figure 1: Dimensionless density (  ), velocity ( u ) and internal energy ( U ) profiles at a time  = 0.6t s. 

 

 

Figure 2: Density  (up) and velocities , ,u v w (down) distributions for finite volume (left) and RK/DG 

(right) methods at time 0.5 s. 

Nonlinear hyperelasticity. This test is from [4] with nondiagonal distortion tensor. The 

RK/DG and finite volume methods are considered. Mesh step is 0.002 cm. Time step is 0.005 
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 s. Piecewise polynomials in each cell are considered up to third order. The initial state is 

given by: 

3

l l l

0 0.98 0 0
km kJ

= 0.5 , = 0.02 1 0.1 , = 10 ,
s gK

1 0 0 1



   
   
   
   
   

u F S   

r r r

0 1 0 0
km kJ

= 0 , = 0 1 0.1 , = 0 .
s gK

0 0 0 1

   
   
   
   
   

u F S   

The material is assumed to be copper with EOS parameters defined in [4]: 0  =  8.9 g/cm
3
,

0 =c 4.6 km/s, =Vc 3.910
-4 

kJ/(gK), 
0 =T 300 K, 

0 =b 2.1 km/s, = 1.0, = 3.0, = 2.0. 

Results are shown in Figure 2 at time 0.5  s in the comparison with finite volume method 

results. RK/DG method has better resolution of waves. The results are fully identical to the 

published ones[4]. 

4.2 Heterogeneous case 

In this testcase mesh step is h  510
-4

 cm and time step is 0.005  s. The polynomials 

inside each cell are considered up to third order. 

Consider the heterogeneous medium model described in subsection 2.1. Homogeneous 

domains correspond to  l = 0,1 / 2  and  r = 1 / 2,1 . The smoothed characteristic 

functions for l,r  are chosen as 
l r= 1  , 

 

 

 

l

0, 0,1 / 2

1 1 1 1 1
= sin , 1 / 2 ,1 / 2

2 2 2 2 2

1, 1 / 2 ,1 ,

x

x x x

x




  

  



  


     
           

    
  

  

where = 10h . Initial conditions are given by[4]: 

l l l

2 1 0 0
km kJ

= 0 , = 0.01 0.95 0.02 , = 0 ,
s gK

0.1 0.015 0 0.9

   
   

   
      

u F S   

r r r

0 1 0 0
km kJ

= 0.03 , = 0.015 0.95 0 , = 0 .
s gK

0.01 0.01 0 0.9

   
   
   
       

u F S   

Left material EOS parameters: 0  =  8.93 g/cm
3
, 0 =c 4.6 km/s, =Vc 3.910

-4 
kJ/(gK), 

0 =T 300 K, 0 =b 2.1 km/s, = 1.0, = 3.0, = 2.0. 
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Figure 3: Denstiy (  ) distribution at  = t 0.5  s (left) and x - t diagram (right). 

 

Figure 4: Velocity ( u ) distribution at  = t 0.5  s (left) and x - t diagram (right). 

 

Figure 5: Stress tensor component ( 11 ) distribution at  = t 0.5  s (left) and x - t diagram (right). 

Right material EOS parameters: 0  =  8.93 g/cm
3
, 0 =c 6.22 km/s, =Vc 9.010

-4 
kJ/(gK), 

0 =T 300 K, 0 =b 3.16 km/s, = 1.0, = 3.577, = 2.088. 

Solution at time  = t 0.5  s is shown in Figures 3-5. Interphase boundary is moving from 

left to right. Left figures correspond to variables profiles at given time, right ones are 

corresponding x - t diagrams. 
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In Figure 3 the density profile and corresponding x - t  diagram is shown at time  = t 0.5  s. 

In Figures 4 and 5 velocity u  and stress tensor component 
11  and corresponding x - t  

diagrams are shown. 

5 CONCLUSION 

The paper discusses the application of the RK/DG method for solving problems of 

hyperelasticity in an inhomogeneous medium. Both models, the homogeneous and 

heterogeneous one, admitting piecewise-constant distribution of medium properties, are 

investigated. As a result of a series of calculations, it was shown that the Godunov-Romenskii 

hyperelastic model can be practically applied to solve gas dynamics problems, when the 

internal energy of a medium depends only on its bulk deformations and entropy. The 

application of the RK/DG method demonstrates sharp resolution of wavefronts, comparable to 

the use of methods of the WENO type. 
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