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Summary. In this paper we will present the global dynamic and the Julia set of a quartic 

second order difference equation with nonnegative parameters and the initial conditions are 

arbitrary nonnegative real numbers. 
 

1 INTRODUCTION 

In general, polynomial difference equations and polynomial maps in the plane have been 

studied in both the real and complex domains (see [8, 9]). First results on quadratic 

polynomial difference equation have been obtained in [1, 2] but these results gave us only a 

part of the basins of attraction of equilibrium points and period-two solutions. In [4], the 

general second order difference equation is completely investigated and described the regions 

of initial conditions in the first quadrant for which all solutions tend to equilibrium points, 

period-two solutions, or the point at infinity, except for the case of infinitely many period-two 

solutions. In [3], case of infinitely many period-two solutions is completely investigated. Our 

results are based on the theorems which hold for monotone difference equations. Our 

principal tool is the theory of monotone maps, and in particular cooperative maps, which 

guarantee the existence and uniqueness of the stable and unstable invariant manifolds for the 

fixed points and periodic points (see [5]). Consider the difference equation 

                        (1) 

where f is a continuous and increasing function in both variables. The following result has 

been obtained in [1]: 
 

Theorem 1 Let     and let            be a function which increases in both 
variables. Then for every solution of Eq. (1) the sub sequences         

  and            
  of 

even and odd terms of the solution do exactly one of the following: 
 

(i) Eventually they are both monotonically increasing. 
 

(ii) Eventually they are both monotonically decreasing. 
 

(iii) One of them is monotonically increasing and the other is monotonically decreasing 
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As a consequence of Theorem 1 every bounded solution of Eq. (1) approaches either an 

equilibrium solution or period-two solution and every unbounded solution is asymptotic to 

the point at infinity in a monotonic way. Thus, the major problem in dynamics of Eq. (1) is 

the problem of determining the basins of attraction of three different types of attractors: the 

equilibrium solutions, period-two solution(s) and the point(s) at infinity. The following result 

can be proved by using the techniques of proof of Theorem 11 in [5]. 
 

Theorem 2 Consider Eq. (1) where f is increasing function in its arguments and assume 
that there is no minimal period-two solution. Assume that           and           are two 
consecutive equilibrium points in North-East ordering that satisfy 

                    

and that    is a local attractor and    is a saddle point or a non-hyperbolic point with second 
characteristic root in interval       , with the neighborhoods where f is strictly increasing. 
Then the basin of attraction       of    is the region below the global stable manifold 
      . More precisely  

                                      

The basin of attraction              is exactly the global stable manifold of   . The 
global stable manifold extends to the boundary of the domain of Eq. (1). If there exists a 
period-two solution, then the end points of the global stable manifold are exactly the period 
two solution. 

Now, the theorems that are applied in [5] provided the two continuous curves        

(sta-ble manifold) i        (unstable manifold), both passing through the point            

from Theorem 2, such that        is a graph of decreasing function and         is a graph 

of an increasing function. The curve         splits the first quadrant of initial conditions into 

two disjoint regions, but we do not know the explicit form of the curve       . In this paper 

we investigate the following difference equation 

        
         

     
         

       
     

             
   (2)  

      
               

                 

We expose the explicit form of the curve that separates the first quadrant into two basins of 

attraction of a locally stable equilibrium point and of the point at infinity. One of the major 

problems in the dynamics of polynomial maps is determining the basin of attraction of the 

point at infinity and in particular the boundary of the that basin known as the Julia set. We 

precisely determined the Julia set of Eq. (2) and we obtained the global dynamics in the 

interior of the Julia set, which includes all the points for which solutions are not asymptotic to 

the point at infinity. It turned out that the Julia set for Eq. (2) is the union of the stable 

manifolds of some saddle equilibrium points, nonhyperbolic equilibrium points or period-two 

points. We first list some results needed for the proofs of our theorems. The main result for 

studying local stability of equilibrium is linearized stability theorem (see Theorem 1.1 in [7]). 

 

Theorem 3 (linearized stability): Consider the difference equation 

                        (3) 
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and let     be an equilibrium point of difference equation (3). Let   
         

  
 and   

         

  
 

denote the partial derivatives of        evaluated at equilibrium   . Let    and    be roots of 

quadratic equation          .  

 

a) If        and      , then the equilibrium    is locally asymptotically stable 

(sink). 

 

b) If         or       , then the equilibrium     is unstable. 

 

c)                             . Equilibrium    is a sink. 

 

d)                                         Equilibrium    is a repeller. 

 

e)                              Equilibrium    is a saddle point. 

 

f)                                                Equilibrium    is 

called a non-hyperbolic point. 

 

The next theorem (Theorem 1.4.1. in [6]) is a very useful tool in establishing bounds for the 

solutions of nonlinear equations in terms of the solutions of equations with known behaviour. 
 

Theorem 4 Let I be an interval of real numbers, let k be a positive integer, and let 

         I be a function which is increasing in all its arguments. Assume that         
 ,  

        
   and         

  are sequences of real numbers such that 

                          

                          

                          

and  

                         
 

Then  
                      

 

The next well-known theorem gives us the number of positive zeros of a polynomial     . 

 

Theorem 5 Let         
      

           where   ,           are  real 

numbers and              are integers. The number of positive zeros of       , 

counting multiplicities, is either equal to      or less than that by an even number, where 

     denotes the number of sign changes in the sequence             
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2 MAIN RESULTS 

By using the Theorem 3, we obtained the following result on local stability of the zero 

equilibrium of Eq. (2): 

 

Proposition 1 The zero equilibrium of Eq. (2) is one of the following: 

 

a) locally asymptotically stable if      , 

 

b) non-hyperbolic and locally stable if      , 

 

c) unstable if      . 

 

Set                                                      and 

let   
         

  
  and   

         

  
 denote the partial derivatives of        evaluated at the 

equilibrium   .  The linearized equation at the positive equilibrium    is 

                

                           

                               

Now, in view of Theorem 3 we obtain the following results on local stability of the positive 

equilibrium of Eq. (2): 

 

Proposition 2 The positive equilibrium of Eq. (2) is one of the following: 

 

a) locally asymptotically stable if             
 

b) non-hyperbolic and locally stable if             
 

c) unstable if             
 

d) saddle point if           
 

e) repeller if                   
 

Theorem 6 If     then every solution      of Eq. (2) satisfies          . 

 

Proof. If       is a solution of Eq. (2) then       satisfies the inequality 

                   

which in view of the result on difference inequalities, see Theorem 4, implies that    
       where      is a solution of the initial value problem 
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Consequently,           then         ,              , and 

          
 

        
 
         

where         such that      for all  , which implies              
 

Theorem 7 Consider the difference equation (2) in the first quadrant of initial conditions, 

where                     and           . Then Eq. (2) has a zero equilibrium and a 

unique positive equilibrium    . The line                                      
                        is the Julia set and separates the first quadrant into two regions: 

the region below the line is the basin of attraction of point         the region above the line 

is the basin of attraction of the point at infinity and every point on the line except            
is a period-two solution of Eq.(2) 

 

Proof. The equilibrium points of Eq. (2) are the solutions of equation  

                                           

that is equivalent to 

                                                (4) 

Since the number of sign changes in the sequence                         is one, 

then by applying Theorem 5 implies Eq. (4) has two equilibria: zero equilibrium and unique 

positive equilibrium   . Since     and      , then by applying Proposition (1) the zero 

equilibrium is locally asymptotically stable. Denote by                         
                                                  and let   and   denote the 

partial derivatives of function        at point   . By straightforward calculation we obtain 

that the following hold: 

                                                            

                             

                                                        

                                

                                                            

                                     
  

Hence, by applying Proposition (2) the positive equilibrium is an unstable non-hyperbolic 
point. Period-two solution u, v  satisfies the system 

                                                               

                                                                

Obviously, the point        is solution of the system above, but it is not period two solution. 
Hence, it has to be      which implies  

                                                           . 
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Therefore every point of the set  

                                                        

is a period-two solution of Eq. (2) except point     Now, we have to show that line  

                                                              
        

is a graph of the decreasing function in the first quadrant. Let for some       there are    
and                   such that                    . As        is increasing in both 
variables then 

                     

which is impossible. Thus the curve          is the graph of function in the first quadrant. 
Further over           then 

  

  
 

  

  
      

By applying the fact that is        is increasing in both variables we obtain      in the first 

quadrant. Hence,             is the graph of the decreasing function in the first quadrant. 

Let      be a solution of Eq. (2) for initial condition          which lies below the line 

                                               .  

Then  

             
     

           
      

      
             

     

           

                     

and  

                     

                                          
 
Thus         and          are two points in North-East ordering                     

which means that the point          is also below the line            and also holds 

            

Similarly, we find 

                   

                                        

Continuing on this way we get 

                                         

which implies that both sub sequences        and           are monotonically decreasing and 

bounded below by     Since below the line           there are no period-two solutions it 

must be       and          On the other hand, if we consider solution       of Eq.(2) 
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for initial condition          which lies above the line            then             and 

by applying the method shown above we obtain the following condition: 

                                 

Therefore, both sub sequences        and         are monotonically increasing, hence 

      and         as    . 

 

The next figure is visual illustration of Theorem 7 obtained by using Mathematica 9.0, with 

the boundaries of the basins of attraction obtained by using the software package Dynamica 

[6]. 

 

Figure 1. Illustration of Theorem 7 

a = 0.3, b = 1, c = 0.5, d = 1, e = 0.4 and f = 0.25 

In view of Theorem 4 which implies results on difference inequalities we get the 
following: 

 
Proposition 3 Consider the difference equation of type 

        
         

     
         

       
     

             
   (5) 

      
               

          

where the given parameters satisfy conditions                       and       . 

Then the global stable manifold of the positive equilibrium is between two lines 

                                                     (6) 

                      .  

and 
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                                                     (7) 

                      .  

Proof.  Since the number of sign changes in the sequence                      
             is one, then by applying Theorem 5 implies Eq. (5) has two equilibria: zero 

equilibrium and unique positive equilibrium    . Since       the zero equilibrium is always 

locally asymptotically stable thus the positive equilibrium must be unstable equilibrium point. 

The theorems applied in [5] provided the following global behavior. More precisely, if the 

positive equilibrium is a saddle point or a non-hyperbolic point then there exists a global 

stable manifold which contains point          ; where    is the positive equilibrium. In this 

case global behavior of Eq. (5) is described by Theorem 9 in [4]. If the positive equilibrium is 

a repeller then there exists a period-two solution and we obtain that the period-two solution is 

a saddle point and there are two global stable manifolds which contain points         and 

        whre       is unique period-two solution of Eq.(5). In this case the global behavior 

of Eq. (5) is described by Theorem 10 in [4]. Although the Theorems 9 and 10 in [4] have 

been applied on a polynomial second order difference equation they are special cases of 

general Theorems in [5] applied on function f, where f is increasing function in its arguments. 

So, the global dynamics of Eq. (5) is exactly the same as the global dynamics of equations 

described by Theorems 9 and 10 in [4]. Furthermore 

        
         

     
         

       
     

             
   

      
               

        

             
      

              
            

         

             
      

                                     

and  

        
         

     
         

       
     

             
   

      
               

        

             
      

         
            

         

             
      

                                     

for all  , by applying Theorem 4 for solution       of Eq. (5) the following inequality holds 

          

for all  , where      is a solution of the difference equation 

                 
      

              
            

        (8) 

             
      

                                      

and      is a solution of the difference equation 

                 
      

              
            

        (9)  
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Since Eq. (8) and Eq. (9) satisfy all conditions of Theorem 7 this implies that the statement 
of Proposition 3 holds.  

3 CONCLUSION 

In this paper we restrict our attention to certain polynomial quartic second order difference 

equation Eq. (2). It is important to mention that we have accurately determined the Julia set of 

Eq. (2) and the basins of attractions for the zero equilibrium and the positive equilibrium 

point. In general, all theoretical concepts which are very useful in proving the results of 

global attractivity of equilibrium points and period-two solutions only give us existence of 

global stable manifold(s) whose computation leads to very uncomfortable calculus. 
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