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Abstract. This paper provides a comparative study and performance analysis of
different rasterization algorithms and approaches. Unlike many other papers, we don’t
focus on rasterization itself, but investigate complete graphics pipeline with 3D transfor-
mations, Z-buffer, perspective correction and texturing that, on the one hand, allow us
to implement a useful subset of OpenGL functionality and, on the other hand, consider
various bottlenecks in the graphics pipeline and how different approaches manage them.
Our ultimate goal is to find a scalable rasterizer technique that on the one hand effectively
uses current CPUs and on the other hand is accelerating with the extensive development
of hardware. We explore the capabilities of scan-line and half-space algorithms raster-
ization, investigate different memory layout for frame buffer data, study the possibility
of instruction-level and thread-level parallelism to be applied. We also study relative
efficiency of different CPU architectures (in-order CPUs vs out-of-order CPUs) for the
graphics pipeline implementation and tested our solution with x64, ARMv7 and ARMv8
instruction sets. We were able to propose an approach that could outperform highly op-
timized OpenSWR rasterizer for small triangles. Finally, we conclude that despite a huge
background high-performance software rasterization still has a lot of interesting topics for
future research.
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1 INTRODUCTION

Modern hardware-accelerated graphics pipeline consists of dozen stages and has great
flexibility [1]. However, it is not always possible to rely on existing graphics hardware
for various reasons. At first, various embedded applications do not have dedicated graph-
ics processors and thus forced to use software implementation. Second, a huge amount
of popular Linux distributives uses open-source graphics drivers with partial or com-
plete software implementation of rasterization (Mesa OpenGL). Particular applications
use specific hardware anyway [2, 3]. In such cases, software implementation should be
able to provide real-time rendering sacrificing graphics quality for the sake of correctness
or clarity of the displayed information. In such situations programmable functionality of
OpenGL shaders, for example, can be excluded or restricted.

At the same time, processors are greately evolved over the past decades and therefore
software rasterization methods that were relevant a couple of decades ago may not be
the best ones for today. This gives rise to a fundamental contradiction in the design of
the rasterizer: it is necessary to pay attention to efficient loading of hardware units of a
modern CPU when we come to its peak performance, but on the other hand we don’t
want to depend too much on any particular hardware. At last, software rasterization is
still remaining a widespread challenge in graphics community and thus, have a scientific
interest to study within itself.

1.1 Need for software rasterization

Today, almost all rendering techniques have become GPU based. Software solutions,
however, do not lose their relevance. For example, Linux uses widely open-source software
graphics drivers (Mesa OpenGL [4]). GPU driver installation is not always easy and even
not possible on some Linux systems (running, for example, on a custom CPU development
board which is quite common for embedded systems). Microsoft also has its own software
rasterizer in DirectX10 and DirectX11 called “WARP”. WARP rasterizer scales well into
multiple threads, and in some cases is known to be faster than low-end GPUs [5]. Besides,
software graphics pipilene is more flexible and can directly use system memory. Thus it is
useful in scientific visualization of large data sets [6, 7]. At last, the recent development of
CPUs sets a new round in software rendering research since many applications for which
it was previously impossible to achieve high speed pure in software are enabled now.

1.2 Graphics pipeline

Before moving on, we would like to shortly describe a subset of graphics pipeline that
we took for our research and point out why this subset is important and challenging to
accelerate on CPU. Useful graphics pipeline requires at least 5 stages:

1. vertex processing;

2. primitive assembly;

3. triangle rasterization;
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4. pixel processing;

5. alpha blending.

Both first and second stages are quite simple, especially if we don’t have to consider
triangle clipping. Vertex processing consists of multiplying points by a matrix and is
implemented trivially. Primitive assembly consists of the formation of triangles by indices
of its vertices and thus, is mostly trivial. Also, these stages are rarely a bottleneck due
to vertices and triangles amount is considerably less than pixel amount.

Fig. 1. Graphics pipeline forming producer-consumer scheme where some threads (0 and 1) push triangles
(or some other portion of work) to queue and other threads process pixels and behave like consumers
taking work from the queue.

However, the following 3 stages are not so simple. It becomes especially noticeable for
multi-core implementation where triangle rasterization became a sort of work distribution
for pixel processing forming a producer-consumer scheme (fig 1). Alpha blending should
be mentioned separately due to it assumes fixed order for processing of pixels for different
triangles. The situation is complicated by the fact that not all rasterization algorithms
and not all methods of efficient pixel processing (using instruction level parallelizm for
example) can be easily used together. This happens due to algorithms have different
optimal data structure layout and different access patterns to frame-buffer data. When
performance is a goal, these problems became essential. Programmable functionality of
OpenGL shaders, on the other side, can be excluded from consideration without loss
of generality due to it influences mostly on the pixel processing computation complex-
ity. Thus, we can model its influence if consider heavy pixel processing cases (heavy in
comparison to vertex processing and triangle assembly, for example).
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1.3 Scientific problems

With the extensively developed graphics hardware last decades many research topics
in the area of real-time software rendering became abandoned. At the same time CPUs
have evolved significantly:

1. deep out-of-order pipelines, speculative execution, SIMD and various CPU architec-
tures;

2. multi-level caches and tremendous gap between memory and processor speed;

3. true multi-core systems, the number of cores increases significantly;

4. The “relaxed memory model” have appeared and efficient sharing of the cache by
many threads has become non-trivial task, especially when increasing number of
cores.

Thus, many algorithms and optimizations that were populular 20 years ago (the dawn
of graphics hardware development) mostly useless and even performance-harmful for mod-
ern CPUs. The goal of our work is to explore different techniques together (considering
the influence of all factors upon each other) and find the most practical and scalable
approach for software implementation of OpenGL graphics pipeline on modern multicore
CPUs which is, in our opinion, is not solved.

2 HIGH PERFORMANCE SOFTWARE RASTERIZATION TECHNIQUES

2.1 Triangle rasterization basics

Before considering triangle rasterization algorithms, we should note that in the existing
graphics pipelines (for example OpenGL, DirectX or Vulkan) there is a certain agreement
about drawing triangles. A pixel is considered as overlapped by a two-dimensional triangle
if its center lies inside the triangle. Thus, the pixel-triangle overlap test is called a
“coverage test” (fig. 2).

Fig. 2. Standard agreement about covered pixels. A pixel is considered as overlapped by two-dimensional
triangle if its center lies inside the triangle.

Probably the most well known scanline algorithm [8] sudbidives a triangle into 2
adjacent triangles with horizontal edges. Then it is proposed in some way to move along
the edges of the triangle and paint the area between the edges line by line. A straitforward
way is to move along edges using finite differences (equations 1 and 2) [9].
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∆xy1 =
v2.x− v1.x

v2.y − v1.y
; ∆xy2 =

v3.x− v1.x

v3.y − v1.y
. (1)

y := y + 1;

x1 := x1 + ∆xy1; (2)

x2 := x2 + ∆xy2.

We will refer to this algorithm “scanline”. Despite the simple idea, we should pay
attention to the fact that the algorithm has certain problems:

• The known algorithms for moving along edges (Brezenham [10], Fujimoto [11], or
algorithm with finite differences discussed above) do not allow us to say whether
the edge pixel is covered by a triangle or not. This means that such a rasterization
algorithm itself does not comply with the agreement adopted in OpenGL. For its
correct implementation it is necessary to add a pixel-triangle overlap test (so-called
“coverage test”, fig. 2).

• The algorithm should be additionally limited to a rectangle (built around a triangle),
because scanline uses division by the difference between the coordinates of 2 vertices,
which under certain conditions became a small number (though zero, as a rule, is
excluded by a separate condition that the triangle does not degenerate into a line).
This leads to the fact that the offset in y by 1 pixel gives a huge offset in x, which
can even go beyond the limits of the screen. The reason for this problem is that
according to the OpenGL standard, the coordinates of the triangle’s vertices when
moving to screen space should be floating point numbers (or at least, have 4-bits
subpixel precision [12]). They can not be just integer pixel coordinates. Therefore,
strictly speaking, the Bresenham algorithm cannot be used to move along edges.

2.2 Related Work

An improved scanline implementation can be found in [13]. It moves along the longest
edge, drawing lines between edges. In comparison to the prevoius naive scanline ap-
proach, this algorithm is simpler for CPU due to it has less branches and special cases
and it doesn’t have a near zero division problem because it doesn’t use finite differences.
However, it does not eliminates the need for the coverage test and the original version
does not implement it. We will refer to this algorithm as “scanline(fast)” and will test
its original implementation without coverage test. Such algorithm would be equivalent to
the classic version using Bresenham for movement along the edges.

In [14] half-space rasterization was proposed. This paper introduces the concept of
edge-function (equations 3–6) which was later adopted as a kind of standard agreement
for “coverage test” that we discussed before. This method is based on the fact that a line
in 2D subdivides the space (plane) into two half-spaces (half-planes). If we substitute the
coordinates of the center of the pixel P into the equation of a line, we can obtain the sign
distance to this line (equation 3). The edge-function is a special case of well known cross
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Fig. 3. Half-space algorithm idea

product and it allows calculating the signed distance from pixel center (x, y) to some edge
— (α, β, γ; equations 4–6). If all signed distances are greater than zero, the point lies
inside the triangle (fig. 3).

E(A,B, P ) = (P.x− A.x)(B.y − A.y) − (P.y − A.y)(B.x− A.x) (3)

Eα(x, y) = E(A,B, P ) = (x− A.x)(B.y − A.y) − (y − A.y)(B.x− A.x); (4)

Eβ(x, y) = E(B,C, P ) = (x−B.x)(C.y −B.y) − (y −B.y)(C.x−B.x); (5)

Eγ(x, y) = E(C,A, P ) = (x− C.x)(A.y − C.y) − (y − C.y)(A.x− C.x). (6)

The most useful property of the edge-function is that it can be evaluated incremen-
tally when rasterizer moves along pixels (figure 4) [14]. Besides, baricentric coordinates
(u, v, w) also can be evaluated directly from edge-function by multiplying its value with
inverse triangle double area which is also evaluated with the edge-function (equations
7–9).

u(P ) =
E(A,B, P )

E(A,B,C)
; (7)

v(P ) =
E(B,C, P )

E(A,B,C)
; (8)

w(P ) = 1 − u(P ) − v(P ) =
E(C,A, P )

E(A,B,C)
. (9)

The most significant advantage of half-space rasterizer is extremely simple kernel of the
algorithm, especially in comparison with scanline approach. No more difficult to fill the
rectangle (fig. 4). This property allows branch prediction mechanisms working efficiently
and this is also the reason for the popularity of hardware solutions. The disadvantage
of half-space approach (in comparison to scanline for example) is the presence of idle
iterations since inside the bounding rectangle; there can be a rather large area which
is not covered by a triangle. However, this disadvantage is easily fixed by a serpentine
traversal algorithm [14] or Blocked based version of half-space rasterization [15].
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1: for y in range minY .. maxY do
2: Cx1 := Cy1;
3: Cx2 := Cy2;
4: Cx3 := Cy3;
5: for x in range minX .. maxX do
6: if Cx1 > 0 and Cx2 > 0 and Cx3 > 0 then
7: u = Cx1*TriAreaInv;
8: v = Cx2*TriAreaInv;
9: framebuffer[x,y] := DrawPixel(u, v, 1-u-v);

10: end if ;
11: Cx1 := Cx1 - Dy12;
12: Cx2 := Cx2 - Dy23;
13: Cx3 := Cx3 - Dy31;
14: end for;
15: Cy1 := Cy1 + Dx12;
16: Cy2 := Cy2 + Dx23;
17: Cy3 := Cy3 + Dx31;
18: end for;

Fig. 4. Half-space rasterization kernel. Cx∗ and Cy∗ variables store edge-functions for line and colum
respectively. TriAreaInv = 1/E(A,B,C) is a constant inverse triangle double area. A triplet of (u, v, 1−
u− v) represents baricentric coordinates of a pixel center.

Blocked based half-space method was also suggested in [14] but well-developed
much later in [15]. The main idea of blocked version is that if we perform coverage test
check (via evaluating edge-function) for 4 corner points of a pixel block (4x4 or 8x8 for
example) and all tests have passed then the block is covered by triangle and we can
fill/process all internal pixels in parallel (for example using SIMD instructions). Several
blocked versions of half-space rasterizer were proposed and tested in [15]. The most com-
plex version (called “Block-based Bisector Half-Space Rasterization”) processes triangle
in such a way that it minimizes checks for empty blocks due to a quick cut of empty space
from inside triangle bounding box. The advantages of “bisector” algorithm appear only
on extremely large triangles and simple fill modes (without texture for example) because
incremental edge-function evaluation is quite cheap in comparison to pixel processing for
a fully-covered or even partially-covered block. At the same time average amount of
blocks for most of triangles is usually just a little: 4-8 blocks. As a result complication
of the algorithm leads to poor performance due to branch misprediction simultaneously
with winning of empty blocks tend to zero. We will refer to the blocked version of half-
space rasterizer as “blocked half-space”. The main advantage of blocked version (over
previous half-space approach) is the possibility of parallel processing of pixels via SIMD
instructions. Besides, blocked half-space algorithm processes empty space faster. The
disadvantage of blocked version appears with small triangles — not all calculations that
were performed for 4x4 tile (for example) are useful.

2.2.1 Floating point vs fixed point

When choosing between a floating point and a fixed point, two cases should be distin-
guished: (1) rasterization algorithm itself and (2) pixel operations. When speaking about
rasterization — current graphics hardware uses “28.4” or “15.8” (or other) fixed point
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format with 4 or 8 bit subpixel precision [12, 1, 16] and there is simply no any reason
for using floating point to process the triangle in the rasterization algorithm. This is so
because a fixed point has deterministic behavior and is not subject to rounding errors;
therefore, it’s not even about speed, but rather about correctness. Both half-space and
scanline approaches are known to be implemented in fixed point well [17, 18].

Fig. 5. PlayStation1 (right) didn’t have correct texture mapping due to absence of floating point for
pixel operations [19].

While speaking about pixel processing — it depends on the hardware. Early versions
of gaming consoles didn’t have floating point support [20] so they had visible problems
with texture mapping and Z-buffer (fig. 5). There are still processors without a floating
point and SIMD support (or its performance may be not enough), therefore, fixed-point
can be an option [18]. Also, if we do not need rendering in three dimensions, we can get
by with a fixed point. Otherwise, we believe that for pixel operations it’s better to use
floating point in conjuction with SIMD. Here are our reasons:

1. Rendering in 3D is difficult to be correct without a floating point (fig. 5).

2. SIMD and floating point can be used together. If SIMD instructions are enabled,
there should be no need in complex and chip-expensive Out Of Order execution
mechanisms to speed-up floating point operations. Blocked based half-space always
has a lot of independent work (at leats 16 operations for 4x4 pixel block), so coarse-
grained instruction parallelism [21] can be used. GPUs actively use this idea sending
commands to the pipeline from different micro-threads [22]. This is why they are
so good at floating point operations and have high memory bandwidth. Thus, even
straitforward implementation of SIMD floating point should work well.

3. Almost all CPUs have different register sets for integer and floating point numbers.
Using both (we must use integer registers for fixed point rasterization anyway) will
increase the effective number of processor registers and in this case reduce register
pressure.

4. A CPU may not have SIMD for integers (for example, SSE1 doesn’t have them).
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5. Half precision reduces architectural state by a half and thus more pixels can be
processed in parallel or we may use less transistors for the CPU or, at least, reduce
necessary memory bandwidth. Processors with half precision support for neural
networks are currently becoming popular (for example late ARM and Intel CPUs).

Thus in our experiments we used fixed point for triangle rasterization algorithms and
SIMD floating point operations for pixel processing.

2.2.2 Multi-threaded implementations

Multithreaded implementation of a graphics pipeline is a challenging task. Figure 1
shows it in general. An unknown number of triangles of arbitrary size is fed to the input
of the graphics pipeline in general (so it is hard to say in advance exactly at which stage of
the pipeline there will be the bottleneck). Non uniform work distrubution is easy arising
here. Triangles could significantly overlap each other. Moreover, if alpha blending is
enabled, a certain order of pixel processing for triangles must be preserved: if the triangle
A was filed into the graphics pipeline before the triangle B, then A must be drawn before
B and its pixels must be processed before the pixels of the triangle B. Otherwise, we will
get an incorrect image.

One of the first papers about software rasterization on modern CPUs is [23]. In this
paper, SSE instructions and multithreading capabilities were exploited. Binned imple-
mentations of rasterizer was used (which is known as a “sort-middle” approach [1]). In
this paper, screen is subdivided into large bins/tiles (in size of 64x64, 128x128 or 256x256
pixels). Once all primitives are binned, threads switch over to tiles for rasterization and
fragment processing work. Thus, in this paper, for each bin there is its own queue of
triangles, which is first completely filled with all the threads, and then all the queues are
emptied in parallel. One tile is processed at a time by only one stream. The blocked
version of half-space rasterization was used with 8x8 block size for SIMD processing of
pixels. An advantage of sort-middle approach from [23] is the correct alpha blend support
by default due to each bin is processed in a single thread. The disadvantage is a limited
parallelization capability due to different bins could have significantly different numbers
of triangles and thus some bins will hang for a while in a single thread when all the oth-
ers bins/threads have already finished. A performance growth demonstrated in [23] was
measured on a quite heavy pixel operations (which reduces the described disadvantage)
with shadow mapping, and even in this case was not perfect. Authors of [24] simply split
screen in 4 parts and [25] also didn’t introduce any new technique.

In [18] disadvantages of sort-middle approach was also noted and a solution was pro-
posed that is parallelized almost perfectly — render different frames completely in different
threads. This idea is similar to Nvidia SLI and AMD Cross-Fire GPU solutions [26]. The
reason for such successful results is that this work bypasses the Amdahl law, making se-
quential calculations parallel via pipelining. Unfortunately, it has at least 2 drawbacks.
First, this method of parallelization does not reduce the latency of rendered information.
It makes the animation smoother, but the user sees the information on the screen with
such a delay as if the whole rendering has occurred in a single thread. In automotive and
avionics applications, for example, such disadvantage became serious, because a person
in critical situation may wrong react to displayed information due to a time lag. Second,
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a processor memory bus has limited bandwidth and thus SLI-method has a physical lim-
itation on parallelizability on a single device (so, Nvidia and AMD use it for multi-GPU
setup) due to each thread accesses its’ own frame buffer and the total amount of memory
moved along the bus increases with the number of threads.

Unlike previously discussed papers, an older work GRAMPS [27] uses the approach
which is known as “sort-last”[1]. This approach parallelizes individual operations on
pixels or groups of pixels, and unlike sort-middle does not require screen to be split into
bins. Thus, different triangles can be processed by different threads. The main focus
of [27] was done on prototyping and simulating graphics hardware. So, there was no
information about efficiency of this approach for software implementation on practice.

2.2.3 Hardware solutions: sort-middle vs sort-last

Modern graphics hardware has a tremendous amount of parallellism inside. However,
before fragments/pixels finally got to the frame-buffer they have to be sorted in some way
to form a correct image. This becomes especially important if alpha blending is used.
Current graphics hardware can be divided into 2 large classes based on what stage of the
graphics pipeline this sorting takes place: sort-middle and sort-last [1].

Desktop GPUs have a high memory bandwidth and uses sort-last approach imple-
menting the ordering of fragments inside Render Output Unit (“ROP”) hardware units.
Same units are known to be used for atomic operations in GPGPU, so, ROPs are useful
units anyway. Mobile GPUs are aimed more at energy efficiency than at performance
and use a sort-middle method (except Nvidia Tegra). This approach is more energy ef-
ficient because it allows performing fewer operations to DRAM keeping a small piece of
framebuffer (for example 64x64) in the on-chip memory (cache). The disadvantage of
sort-middle approach for GPUs is lower performance with a large number of triangles due
to vertex shader and triangle set up executes several times (thus multiplying the cost of
geometry stages with the number of tiles).

2.2.4 Software rasterization on GPUs

First succesfull software GPU implementation “in compute” (i.e. without using ded-
icated rasteriszation units) was proposed in [12]. This implementation was a three-level
(bin-raster, coarse-raster, fine-raster) and used sort-middle on desktop GPUs. More ad-
vanced approach was suggested in [28] which reduces memory transactions in comparison
to [12]. Due to efficient usage of shared memory and the extremely high computing power
of the GPU, good results were obtained in both papers described above. Combined with a
heavy pixel shader software rasterizations may have almost the same speed than hardware
implementation but it may have higher flexibility.

Larabee [29] uses 4x4 blocked half-space with 16-wide vector instructions and the
algorithm was recursive: each triangle evaluates 16 blocks of pixels at a time to figure
out which blocks are even touched by the triangle, then descended into each block that’s
at least partially covered, evaluating 16 smaller blocks within it, continuing to descend
recursively until we had identified all the pixels inside the triangle [16]. Thread paralellizm
used sort-middle approach.
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2.3 PERFORMANCE EXPERIMENTS AND ANALYSIS

We tested various methods on the fixed set of scenes. However, the purpose of our
experiments was to select successful methods for a wide range of scenes. Therefore one of
the most important criteria for an objective study is the correct choice of test scenes.

2.3.1 Test scenes

Our test scenes are presented at fig. 6 and 7. We chose these scenes so that the
bottlenecks are presented in different parts of the graphics pipeline. Here is the description
of these scenes and their rasterization modes/states:

1. T1: 18 triangles, color interpolation with perspective correction and Z-buffer;

2. T2: 8K triangles, color interpolation without perspective correction (2D mode);

3. T3: 92 triangles, texture with bilinear fetch, perspective correction and Z-buffer;

4. T4: 4K triangles, same rasterizer state than a previous one;

5. T5: 37K triangles, same rasterizer state than a previous one;

6. T6: 131K triangles. same rasterizer state, lighting was baked in the texture.

T1 scene is simple in all stages: geometry, rasterization and pixel processing. T2 scene
is simple in pixel and geometry processing, but more complex for rasterizer itself due to it
draws 8K small triangles. T3 scene is complex in pixel processing but simple at geometry
and rasterization stages. T4 (4K triangles) and T5 (36K triangles) scenes are more or
less balanced. T6 scene contains 131K triangles and is positioned as a complex scene for
all stages. T6 scene has baked lighting. Therefore, having a small number of test scenes,
we are able to study different bottlenecks in graphics pipeline ignoring irrelevant details
of a complete OpenGL implementation in the same time.

2.3.2 Investigated and proposed techniques

Thus, we have implemented minimal but useful graphics pipeline subset. Such things
as attribute interpolation, perspective correction and depth buffer during triangle ras-
terization are implied. Pixel processing includes texture mapping with bilinear filtering.
However, we don’t evaluate differentials (dFdx/dFdy [30]) for texture coordinates and
avoid using MIP levels. For each OpenGL state we have implemented code generator
using C++ templates for pixel processing excluding unnecessary code explicitly.
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Scene T1 Scene T2 Scene T3

Scene T4 Scene T5 Scene T6

Fig. 6. Our test scenes rendered in solid mode to demonstrate their actual appearence.

Scene T1 Scene T2 Scene T3

Scene T4 Scene T5 Scene T6

Fig. 7. Our test scenes rendered in wire frame to demonstrate triangles.
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Thus, our pixel processing code doesn’t have any branches except a depth test. For
experiments we used three states/filing modes: (1) 2D color interpolation without texture
(T2 scene); (2) 3D color interpolation with perspective correction and depth test (scene
T1), and (3) 3D mode with texture mapping (other scenes), perspective correction, depth
test and bilinear texture fetch.

Using compiler explorer [31], we have estimated that the first mode consists of ap-
proximately 68 instructions per pixel and the second takes 290 instructions (though each
instruction processes line of 4 or 8 pixels for blocked half-space algorithm) for x64 CPU
architecture (table 6). It may seem that having 68 instructions for just interpolating
colors is too much. This is partly true; here we can see the disadvantage of the blocked
half-space algorithm: it must evaluate half-space distances and baricentrics for all pixels
in block while the iterative half-space evaluates them incrementally. On the other hand,
texture mapping introduces significant amount of computation making this disadvantage
irrelevant.

Rasterization algorithm: scan-line vs half-space. Our first experiment was about
comparison of existing rasterizations algorithms on a single core (table 1). We used SSE
processor instructions to accelerate computations where possible. For scan-line and half-
space columns we vectorized the calculations by coordinates and image channels (we call
such approach “sse1” in table 2). For blocked half-space we used pixel vectorization
(i.e. single command processes a bunch of pixels; we call this approach “simd(sse4)”
and “simd(avx8)” depending on instruction length). Rasterization algorithms themselves
were implemented in a fixed point. We further studied optimal tile size (which is related
to vector length) in our experiments (table 2).

scene half-space blocked half-space scan-line scan-line (fast) fill color

T1 286 FPS 294 FPS 158 FPS 400 FPS 625 FPS
T2 650 FPS 417 FPS 83 FPS 117 FPS 667 FPS
T3 68 FPS 91 FPS 61 FPS 73 FPS 500 FPS
T4 76 FPS 87 FPS 48 FPS 53 FPS 400 FPS
T5 57 FPS 51 FPS 35 FPS 46 FPS 250 FPS
T6 50 FPS 40 FPS 19 FPS 22 FPS 116 FPS

Table 1: Time for different rasterization algorithms. Each implementation was accelerated with SSE
instructions. All numbers (FPS, Frames Per Second) are measured for single thread and 1024x1024
resolution. The higher is better. The last column fill color is a tiled half-space algorithm filling all pixels
with white color (like memset). We consider the performance of this case as the best possible one and
compare the rest with respect to it. For this experiment we have used Intel Core i7 (3770, 3.4Ghz) CPU.

Experimental results show that the scan-line approach does have an advantage over
half-space on large triangles and simple filling modes if a coverage test is removed (table 1,
first row, scene T1). However, this advantage is easily eliminated by increasing block size
in blocked half-space algorithm (table 2, fist row, avx8 column): blocked half-space gives
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448 FPS versus 400 FPS (this comparison, though is not quite correct since the numbers
in tables 1 and 2 were measured on different processors, but we can rely on it because Xeon
with a lower frequency in a single thread is usually slower than the Core-i7 ) for scan-line
(fast). In all other cases, half-space and blocked half-space show absolute advantage over
scan-line approach.

Comparing half-space and blocked half-space approaches we can say that blocked half-
space algorithm is usually better (table 1). The exceptions are scenes T2 and T6 where
common half-space algorithms substantially defeated the vectorized version. This result
is explained quite simply: T2 and T6 scenes contain a lot of small triangles which result
in a large amount of partially-covered blocks for a block based rasterizer.

scene pure cpp simd (sse1) simd (sse4) simd (avx8) fill color (sse4)

T1 147 FPS 297 FPS 427 FPS 448 FPS 588 FPS
T2 108 FPS 204 FPS 102 FPS 96 FPS 137 FPS
T3 35 FPS 61 FPS 83 FPS 92 FPS 500 FPS
T4 35 FPS 65 FPS 74 FPS 62 FPS 323 FPS
T5 26 FPS 44 FPS 42 FPS 33 FPS 119 FPS
T6 17 FPS 36 FPS 16 FPS 13 FPS 30 FPS

Table 2: Frames per second for different acceleration techniques for half-space (pure cpp and sse1) and
tiled half-space (simd(sse4), simd(avx8)) rasterizers. All numbers are measured for single thread and
1024x1024 resolution. The higher is better. The last column fill color (sse4) is a tiled half-space algorithm
filling all pixels with white color (like memset). We consider the performance of this case as the best
possible one. For this experiment we have used Intel Xeon (5-2690 v4 2,6Ghz) CPU.

Combined approach. Such a result encourages us to combine sse1 and sse4 imple-
mentations: if a block is fully-covered, we used vectorized pixel processing; if a block is
partially-covered we render its pixels subsequently using vectorization by coordinates or
color channels (table 3, column “sse1+sse4”). It can be seen from table 3 that combined
approach is good in average, but was not the best in all cases. We explain this by saying
that blocked half-space implementation (and combined algorithm as follows) is much more
complicated for branch prediction and speculative execution mechanisms. So, combined
approach can be further improved: for triangles with small area use simple half space
(sse1) and for other — cobmined (sse1+sse4) algorithms. This approach allowed us to fix
performance for scenes with a large number of small triangles (T2 and T6).

Threads: sort-middle vs sort-last. As can be obvious from the previous work, most
existing implementations use straitforward sort-middle approach subdividing image into
bins. This approach supposes that pixel work dominates over geometry and rasterization
itself. We also began with sort-middle approach but we have found that adding bins is
in itself introducing essential overhead (table 4, second column). This happens due to
essential duplicating of triangles that overlapped several bins and it becomes noticeable on
geometrically-heavy scenes (T2, T5 and T6). Then we decided to try a different approach.
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Having 4x4 blocked half-space algorithm, we decided to use spin-locks for 4x4 tile and
thus implemented sort-last. We used std::atomic flag [32] for spin-lock implementation.

The sort-last, in general (if we do not take into account the locks), should scale better
due to it processes separate triangles in parallel. An additional advantage of this algorithm
is locality and cache efficiency for triangles data: rasterized triangles are formed on the
top the stack (or triangle queue) memory and they are in the cache.

If go further, sort-last could be optimized in such a way that it reads data directly
from user input pointers, rasterizes triangles and immediately discards them (thus turning
into a memory-compact and cache-effitient way). However, we did not do this because
OpenGL has tremendous amount of ways for input user data layout.

scene pure cpp simd (sse1) simd (sse4) simd (sse1+sse4) fill color (sse4)

T1 147 FPS 297 FPS 427 FPS 430 FPS 588 FPS
T2 108 FPS 204 FPS 102 FPS 197 FPS 137 FPS
T3 35 FPS 61 FPS 83 FPS 84 FPS 500 FPS
T4 35 FPS 65 FPS 74 FPS 79 FPS 323 FPS
T5 26 FPS 44 FPS 42 FPS 46 FPS 119 FPS
T6 17 FPS 36 FPS 16 FPS 31 FPS 30 FPS

Table 3: Comparison of suggested combined implementation (sse4+sse1). All numbers are measured for
single thread and 1024x1024 resolution. The higher is better. The last column fill color (sse4) is a tiled
half-space algorithm filling all pixels with white color (like memset). We consider the performance of this
case as the best possible one. For this experiment we have used Intel Xeon (5-2690 v4 2,6Ghz) CPU.

Although, the sort-last can be implemented in different ways, we used the simplest
approach: a thread performs lock of 4x4 tile, processes pixels and then immediately
unlocks the tile. For parallel processing of triangles we used a lock-free concurrent queue
[33]. Some threads act as producers and push triangles into queue (1 or 2), while the others
act as consumers, taking out triangles from the queue and performing rasterization. We
did not limit the size of the queue, although we believe that for better cache efficiency it
is worth doing, switching producer threads to consuming triangles when a limit has been
exceeded.

Fig. 8 shows our experiment results. The sort-middle approach, as expected, was
better for pixel-heavy scenes. However, for cases where pixel work was not enough, sort-
last approach has won. The exception is T6 scene. This result seemed strange for us,
especially in combination with the fact that sort-last has shown almost linear scaling on
T2 scene. Nevertheless, this result may be explained. Scene T2 consists of 8K small
random triangles (which bounding boxes overlap only slightly) where each next triangle
is located at random position on the screen. Scene T6 consists of successive triangle strips
and also triangle bounding boxes overlap much more. We were able to achieve a slight
performance increase (15-20%) by increasing the pulling portion size for the consumer up
to 4 triangles (this reduces conflicts of threads if they process a single trip). However,
threads that handle different strips still conflict much. Moreover, T6 scene is heavier for
pixel processing than T2, so sort-middle has won here.
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Fig. 8. Multithreading experiment. X axis — number of threads. Intel Xeon (5-2690 v4 2,6Ghz, 14
cores) CPU.

167



V.A. Frolov, V.A. Galaktionov, B.Kh. Barladyan

At last, we should make a note that in our comparison, a sort-last approach used pitch-
linear buffer, and the sort-middle used a binned/tiled one. After comparing these two
methods (pitch-linear vs tiled) in next subsection we can state that a sort-last approach
can be even more efficient if it uses a tiled frame-buffer.

Framebuffer layout: pitch-linear vs tiled. Our next experiment was targeted to
investigate memory subsystem efficiency when access frame buffer data. We assumed
that frame buffer (and also depth buffer) access can be a bottelneck due to these buffers a
priori can not be fit into the cache. Thus, some tiled frame buffer layout might be helpful
because of less cache misses when accessing different rows (fig. 9).

We have investigated 4 different implementations (table 4):

1. pitch-linear frame and depth buffers layout. Default layout of 2d image by rows.

2. pitch-linear + binning overhead. This implementation has the same memory layout
as a prevous one. However, it has bins for different 64x64 tiles and thus triangles
that overlap several tiles should be duplicated. This implementation will show use
binning overhead.

3. big tiles (64x64), i.e. bins. For this layout we split screen into 64x64 bins. For each
bin inside we used pitch-linear layout.

4. Two-level tiling. At the first level, we split screen into 64x64 bins. At the second
level we split each bin into 16x16 tiles thus making address linear inside the whole
tile. Such layout will also allow wide vectors (for example, AVX512) being used for
the whole 4x4 tile.

scene pitch-linear pitch-linear + bins bins (64x64) bins (64x64) + tiles (16x16)

T1 340 FPS 345 FPS 444 FPS 476 FPS
T2 113 FPS 103 FPS 147 FPS 145 FPS
T3 98 FPS 99 FPS 161 FPS 169 FPS
T4 99 FPS 82 FPS 132 FPS 141 FPS
T5 85 FPS 46 FPS 82 FPS 91 FPS
T6 40 FPS 20 FPS 33 FPS 34 FPS

Table 4: Comparison of pitch-linear and tiled frame buffer layouts. The higher is better. Blocked half-
space algorithm was used (4x4). For this experiment we have used single thread and Intel Xeon (5-2690 v4
2,6Ghz) CPU. First column shows a default pitch-linear framebuffer layout. Second column demonstrates
overhead we got from binned approach by itself: some triangles are duplicated due to they overlap several
bins. Third column shows performance for binned approach and the last one — for two-level bins (64x64)
+ small tiles (4x4) approach.

Thus, memory layout has an extremely large impact on performance and tiled layout
sould be definitely used.
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Fig. 9. Different framebuffer layout illustration. On this image, a bin size is shown to be 8x8, however
on practice it was 64x64. Default pitch-linear is shown at top left image. Binned/tiled — top right.
Two level (64x64 bins + 4x4 tiles) layout is shown at bottom left and Morton code layout [34] is shown
at bottom right. With algorithmic point of view, the last one has better 2D locality [34]. However,
Morton code evaluation is expensive and will also complicate half-space distances evaluation. At the
same time, we would like to guarantee that all pixels in line have a subsequent addresses. This allow us
reading/writing line of pixels with the single instruction and easily change length of instruction to test
both SSE (for 4x4 tiles) and AVX (for 8x8 tiles).

CPU architecture: In Order vs Out Of Order. Our last experiment was aimed
to study efficiency of different processor architectures for software graphics pipeline and
rasterization. A trade off between performance and other CPU characteristics (such as
energy efficiency, heat dissipation and cost) is essential for embedded systems. It is
well known that the most significant performance gained on modern CPUs gives super
scalar Out Of Order execution pipeline. This mechanism, at the same time, is the most
expensive one. Our assumption is that with a large number of vector operations and
independent instruction flow, software graphics pipeline should work well even on an in-
order processor. Another reason we make this comparison is that in-order processors
are more easily implementing precise exceptions which are important for safety-critical
applications.

Since our blocked half-space algorithm is implemented via platform-independent light-
weight vector library, we could easily port it to ARM. Unfortunalely our SSE1 imple-
mentation is heavily platform dependent (though, various options are exists [35]), so in
this experiment we tested only pixel vectorization (blocked half-space algorithm). Using
compiler explorer [31], we have counted instructions for different arhitectures and pixel
processing modes (table 6). This information would allow us to more accurately evaluate
how well the pipeline was loaded by the arithmetic instructions.

For this test we have selected several CPUs (table 7). First two processors (A83T
and Cortex A53) are 2-way super scalar in-order machines. The i.MX6 (Cortex A9) has
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scene pitch-linear bins (64x64) bins (64x64) + tiles (16x16)

T1 340 FPS 444 FPS 476 FPS
T2 113 FPS 167 FPS 164 FPS
T3 98 FPS 161 FPS 169 FPS
T4 99 FPS 150 FPS 155 FPS
T5 85 FPS 102 FPS 114 FPS
T6 40 FPS 60 FPS 63 FPS

Table 5: Comparison of pitch-linear and tiled frame buffer layouts without binning overhead. The
higher is better. Half-space block (4x4) algorithm was used. For this experiment we have used single
thread and Intel Xeon (5-2690 v4 2,6Ghz) CPU. First column shows a default pitch-linear framebuffer
layout. Second column shows performance for binned approach and the last one — for two-level bins
(64x64) + small tiles (4x4) approach.

2-way super scalar out of order pipeline. The Core-i5 2410M (Sandy Bridge) has 4-way
super scalar out of order pipeline. In addition to a wider pipeline, Sandy Bridge has many
floating point ALUs, so it can execute 16 single precision floating point operations per
clock (4 SIMD instructions per clock, each of 4 floats).

CPU arch/mode Colored2D Colored3D Textured3D

x86/x64 68 100 290
ARMv7 79 110 500
ARMv8 60 86 250

Table 6: Comparison of instruction count per pixel for different rasterization states and CPU architec-
tures. GCC compiler. 4x4 tiles were used. Colored2D includes color interpolation only. Colored3D —
color interpolation with the perspective correction and a depth test. Textured3D adds bilinear texture
fetch and perspective correction of texture coordinates to the previous mode. We have observed a signif-
icant increase in the number of instructions for ARMv7 and Textured3D mode due to spilling registers
to memory. We used GCC 5.4.0 for both ARM cases.

We further introduce a special metric (equation 10, fig. 10) to compare in-order vs
out of order from measured frames per second (table 7). We do this because in our ex-
periments we used different CPUs with different architectures, manufacturing technology
(for example 14 and 28 nm) and frequency. Our reason is straitforward: we don’t want to
compare the absolute performance values for different processors like table 7 does. Instead
of that, we would like to approximately match instructions per clock for different CPUs to
know whether out of order gives a benefit for our problem or not. Thus, if for a some CPU
we have more instructions than for the other, we do not consider this a disadvantage for
our comparison and we also do not want to take into account any inefficiencies introduced
by the compiler. For this reason, the instruction count is in the numerator. At the same
time frequency should be in denominator to bring all measures to a single frequency.
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scene A83T(ARMv7) Cort.A53(ARMv8) i.MX6 (ARMv7) Core-i5 (x86/x64)

pure cpp SIMD pure cpp SIMD pure cpp SIMD pure cpp SIMD
T1 16,7 17,5 26.3 35,9 13.9 19.2 96 191
T2 17,9 21,2 33,2 19,0 14,1 6,6 79 77
T3 5,8 6,5 7,4 14,5 4,5 6,3 27 67
T4 6,0 6,2 8,0 12,2 4,8 5,1 28 55
T5 4,5 4,6 6,1 7,0 3,7 3,0 22 33
T6 2,8 2,2 3,6 2,7 4,1 1,3 14 13

Table 7: Performance of a single-pixel (pure cpp) and vectorized (SIMD) versions. Frames Per Second
(FPS). Single thread, 1024x1024 and offscreen rendering. Binned frame-buffer (64x64 pixels) is used.
A83T and Cortex A53 are in order machines; i.MX6 and Core-i5 are out of order ones. For this test we
have used a laptop version of Core-i5 CPU (2410M, 2.3 GHz).

Efficiency =
FPS ∗ Instructions

Frequency
. (10)

Fig. 10. Relative CPUs efficiency (equation 10). This efficiency could be thought as a relative instruction
per clock (IPC). All histogram columns were obtained from SIMD columns of table 7.

Fig. 10 shows that the out of order (OOO) execution mechanism in itself gives only
a very little benefit in average (compare A83T over i.MX6 — they both have 2-way
execution pipeline, but i.MX6 have OOO and the A83T don’t have it). The loss of the
i.MX6 on T2 and T6 scenes can be easily explained — this is a result of expensive pipeline
flush for the out of order CPU due to large amount of branch misprediction and complex
code path in the blocked half-space algorithm; we rendered partially covered blocks with
common (not vectorized) C++ code and therefore branch misprediction forces the CPU to
flush pipeline and start executing another piece of code. Core-i5 has speculative execution
mechanism and thus amortizes this problem. At the same time, in-order machine with
greater amount of registers (ARMv8) shown better IPC (fig 10). Therefore, more registers
combined with better code density for ARMv8 in Cortex A53 shown much better absolute
performance than OOO execution added to ARMv7 in i.MX6 CPU (table 7).
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2.3.3 Comparison with other implementations

We have compared our implementation to Mesa on A83T (ARMv7) and Mesa-OpenSWR
on Intel Core-i7 CPUs (x86/x64). For Core-i7 we used high performance OpenSWR [6]
implementation on Windows 7 and for A83T we used default Mesa 10.5.4 software ras-
terizer on Ubuntu Linux 16.04.6 LTS (xenial), BPI-M3 dev-board [36]. All comparisons
were done in 1024x1024 resolution for windows and in 1024x640 for Linux on BPI-M3
due to maximum resolution limitation; please also note that this time (table 8) we have
to include frame buffer display time into the comparison and therefore our numbers for
A83T CPU in tables 8 and 7 are slightly differ.

Scn/CPU A83T(ARMv7), 1 and 4 threads Core-i7, 4 threads
Scn/OGL Mesa (1 thread) Ours (1 thread) Ours, 4 threads OpenSWR Ours

T1 5.6 FPS 7.0 FPS 16.5 FPS 400 FPS 240 FPS
T2 4.2 FPS 5.7 FPS 15.0 FPS 136 FPS 150 FPS
T3 1.0 FPS 6.7 FPS 14.8 FPS 270 FPS 210 FPS
T4 0.77 FPS 7.5 FPS 8.2 FPS 220 FPS 101 FPS
T5 0.45 FPS 5.0 FPS 6.1 FPS 110 FPS 63 FPS
T6 0.26 FPS 3.3 FPS 4.8 FPS 33 FPS 40 FPS

Table 8: Comparison of our implementation to Mesa and OpenSWR OpenGL implementations. In this
comparison, we used several optimizations altogether (such as tiled frame buffer and multithreading).

On x86/x64 our implementation [37] could not beat OpenSWR on pixel-heavy scenes
(table 8). However, we were faster on T2 and T6 scenes where our combined approach
(sse4+sse1, section 2.3.2) has shown its advantage. Our code was designed to quickly test
the maximum number of different rendering techniques. So, considering that OpenSWR
is made by Intel for the x86/x64 architecture only (and it simply can not run on the
others), it would be naive to expect excellence from our experimental implementation for
all cases. We believe that OpenSWR generates better vectorized code (processing a half
of 4x4 tile with a single AVX instruction, for example). Also OpenSWR could proceed
better with multithreading due to our experiments revealed problems for both studied
methods (sort-middle and sort-last).

On the other hand, with the same software implementation, we can significantly out-
performs default Mesa rasterizer on ARM which was the only avaliable software solution
for BPI-M3 board during our work with it; according to our information there is no work-
ing graphics driver for Ubuntu Linux on BPI boards and therefore the whole rendering
is performed actually in the software. Many other developent boards suffer the same
problem on practice (along with patent issues [38]).

3 CONCLUSIONS

In this article we investigated various high performance graphics rasterization algo-
rithms and techniques to be accelerated on different modern processor architectures. Prac-
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tical and scalable solutions for software implementation of OpenGL graphics pipeline on
modern multicore CPUs were elaborated.

The experimental results demonstrated unexpected results — even on fairly simple test
scenes popular methods (sort-middle and blocked half space) substantially lost to rarely
used ones (sort-last and simple half space). Relying on these results, a combined approach
(blocked half-space + half-space) accelerated with SIMD instructions was introduced that
have beaten extremely optimized OpenSWR implementation for 2 scenes. At the same
time our implementation outperform default Mesa rasterizer on ARM CPUs an order of
magnitude, which demonstrates the relevance of this area of research. We also offered a
special metric for benchmarking relative Instructions Per Clock (IPC) for different CPUs
without special tools, and this metric shows relatively low efficiency of the out of order
mechanism itself for pixel processing. The more particular conclusions are shown further:

1. Half-space rasterization methods are absolutely better than scanline ones;

2. SIMD pixel processing for blocked half-space rasterizer gives essential benefit, but
has limitations:

(a) small triangles degrade performance, so the combined approach should be used;

(b) wide vectors on architectures with low amount of vector registers may not
have benefit due to high register pressure, increased number of instructions
and spilling intermediate results to memory (table 7).

3. Even in such a computationally intensive task as pixel processing during rasteriza-
tion (where the ratio of computational instructions to memory operations is greater
than 100:1), memory access is still a seriously performance limit. Tiled frame buffer
and depth buffers layouts increase performance up to 60%;

4. Despite our multithreading implementation is far from perfect (we don’t have linear
acceleration for most cases), we believe that the sort-last approach is more perspec-
tive, although it is non trivial.

5. For the considered problem out of order (OOO) machines have essential benefit if
the OOO machine has significantly larger maximum instructions per clock than an
in order one. It is more essential to have larger maximum thoroughput of floating
point instructions (i.e. have for floating point ALUs).

When we first started our work, we were sure that it would be more technical and that
all the research that could be done in this area had already been done due to the popularity
of GPUs today. However, on practice, everything turned out to be differently. We could
not find a single optimal approach for the implementation of software rasterization and
graphics pipeline. Moreover, we found that with the advent of GPUs, researchers mostly
ignore real-time software rendering. At the same time, processors were actively developing,
so we believe that this field is the fertile ground for the future performance research.
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