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Summary. Using the example of a numerical solution of a model problem with a nonlinear 
Burgers equation, the quality of the approximation of the original equation by two and three-
layer difference schemes written on grids with fixed and moving nodes is studied. Modeling 
with the subsequent analysis of its results has shown that in the Cartesian coordinate system 
the quality of the numerical solution essentially depends on the quality of the finite-difference 
approximation used for the initial equation. The application of the two-layer Crank-Nicholson 
scheme and the three-layer difference scheme of the Cabaret type with the second order of 
approximation formulated in the Cartesian coordinate system showed that the three-layer 
difference schemes have a distinct advantage and give a solution of higher quality, except for 
regions with large gradients. The application of an arbitrary non-stationary coordinate system 
made it possible to implement a dynamic adaptation of the grid in which the distribution of 
nodes is dependent and controlled by the sought solution, which makes it possible to 
automatically adjust the calculated grid in such a way that the approximation error turns out to 
be minimal practically regardless of the quality of the original difference scheme. The 
numerical solution of the nonlinear Burgers equation with the help of two and three-layer 
difference schemes on a dynamically adapting grid showed virtually complete coincidence of 
the calculations with each other, a good agreement with the exact solution with complete 
absence of oscillations in the solution. The calculation grid contained the number of nodes (n 
= 25) by two orders of magnitude smaller than the grid with fixed nodes.  
 

1 INTRODUCTION 

The numerical solution of the equations of continuum mechanics, which describe 
convection-diffusion processes with the predominance of the convective transport 
mechanism, is one of the fundamental problems of computational mathematics. The main 
difficulties of the computational process are due to the error that arises when differential 
equations are approximated by difference schemes. The approximation error is manifested in 
the form of dissipative and dispersive properties of finite-difference schemes. Depending on 
the relationship between these properties in the solution, not only quantitative, but also 
qualitative distortions can occur. 
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Such computational features are the most completely investigated and generalized in the 
systems of linear and nonlinear equations of hyperbolic type. These include the equations of 
gas dynamics [1], elasticity theory [2], shallow water [3,4], etc. For many years of research a 
large number of finite-difference schemes have been developed [5-9] for the solution of these 
equations, having their own advantages and disadvantages. It is known that classical finite-
difference schemes with the first order of approximation for the equations of convective 
transport in Euler variables have too much dissipation, which leads to a strong smoothing of 
the solution in the regions of local extrema. The schemes of higher (2nd and higher) order 
according to the theorem of S.K. Godunov [10] are not monotonic due to a high 
approximation dispersion, which often causes the appearance of parasitic oscillations in the 
regions of large solution gradients. As a result, classical difference schemes can not always 
provide the necessary accuracy of numerical solutions.  

The dissipative and dispersion properties of classical difference schemes are improved in 
various ways. A decrease in the scheme dissipation can be achieved by increasing the order of 
approximation [8], and for the monotonization of the solution, the methods of artificial 
viscosity [7] and nonlinear correction [11] are usually used. Recently, the methods for 
constructing nonlinear difference schemes (so-called high resolution algorithms) that improve 
the dissipative and dispersive properties of classical linear difference schemes with the help of 
nonlinear correction of fluxes have become most widely used. When constructing improved 
nonlinear schemes of high accuracy order, the dissipative difference schemes of Godunov 
[10] or Lax-Wendroff [12] are used as the initial ones. 

In one of the first papers [13], the construction of a high-resolution scheme (the Flux 
Corrected Transport (FCT) method) was achieved by reducing the dissipation in the original 
low-dispersion scheme (the first-order Godunov scheme [10]), introducing antidiffusion 
fluxes while preserving the boundedness of the solution [14]. Another example of 
constructing high-resolution schemes is higher order approximation schemes based on the 
principle of non-increase of the total variation of the solution (TVD - Total Variation 
Diminishing) [11,15,16]. In this approach, to fight with numerical oscillations, an increase in 
the order of approximation is used, which is achieved by adding delimiters to the difference 
scheme in such a way that the scheme possesses a high order on smooth solutions and retains 
monotonicity in the regions of strong discontinuity. Methods for constructing difference 
schemes with low dispersion also include the ENO (essentially non-oscillatory) and WENO 
(weighted essentially non-oscillatory) methods [17-20]. These methods, like the TVD 
methods, are used to achieve a more subtle balance between dispersion and dissipation errors. 
Increasing the order of approximation in these schemes is achieved by increasing the 
computational template. Most highly accurate methods based on explicit wide-template 
difference schemes [21, 22] of an increased (up to the 12th [23]) approximation are found in 
shallow water problems [24] and aeroacoustics [25, 26]. However, the use of wide-scale 
schemes faces a number of difficulties associated with setting the boundary conditions, 
modifying the templates near the boundaries, and the sensitivity of the schemes used to the 
degree of homogeneity of the calculated grids. 

The use of wide-template schemes is not the only way to obtain good dissipative and 
dispersion properties. Another direction for improving the properties of difference schemes 
was formulated in [27], [28]. On the example of the solution of the one-dimensional 
convection transfer equation, explicit linear 3-layer difference schemes with improved 
dispersive and dissipative properties were shown in these papers and are known as the 
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Upwind Leapfrog [27] and Cabaret (Compact Accurately Boundary-Adjusting High-
REsolution Technique) schemes [28]. The Cabaret scheme is designed taking into account the 
results of the Upwind Leapfrog scheme. It was based on a new formulation of the compact 
Upwind Leapfrog scheme of the second order, which is achieved by introducing independent 
conservative and flux variables. The scheme proposed in the first papers [28], [29] was further 
developed in [30], [31]. The necessary monotonization of the solutions in the regions of large 
gradients was achieved with the help of a simple algorithm of nonlinear correction of fluxes 
based on the maximum principle [30]. 

A distinctive feature of the Cabaret scheme, in comparison with the most high-resolution 
schemes, is that it is completely discrete in space and time (x, t), has a second order in x and t 
(O (Δx2 + Δt2)) and, all improved properties are obtained on the least possible compact 
difference template. Later, the Cabaret scheme was generalized to the cases described by 
quasilinear hyperbolic equations [32], [33] and the equations of gas dynamics in the one-
dimensional and two-dimensional approximation [34]. 

The brief overview shows that the problem of finding new ways to improve the dissipative 
and dispersive properties of the difference schemes used to solve the problems of fluid and 
gas mechanics remains open and is still relevant. 

The purpose of this publication is to demonstrate a different approach to improving the 
dissipative-dispersion properties of difference schemes with a second order of approximation. 
The achievement of this goal is carried out using the method of dynamic adaptation [35], [36], 
in which the controlled distribution of nodes of the grid at each time is achieved by the sought 
solution. A complete matching of the motion of the grid nodes with the evolution of the 
solution leads to a decrease in the dissipation and to the complete zeroing of the dispersion of 
the difference scheme. Demonstration of the possibilities of the approach is carried out using 
the example of a numerical solution of the Burgers equation. The effectiveness of this 
approach is determined by comparing the results of the solution of the Burgers equation with 
the use of two-layer difference schemes of Crank-Nicolson and three-layered Cabaret type. 

2 STATEMENT OF THE PROBLEM 

A number of mathematical models that form the basis of the problems of fluid and gas 
mechanics are reduced to the convection-diffusion problems. These models describe two 
basic mechanisms of energy and substance transfer: diffusion and convection. Depending on 
the external conditions, each of the mechanisms may have a dominant influence. To estimate 
the predominance of a particular process, one usually uses dimensionless parameters, the so-
called Peclet number (Pe) or Reynolds number (Re). At Pe << 1 (Re << 1) the diffusion 
process dominates in the system, and for Pe >> 1 (Re >> 1) the convective transfer 
predominates. In the case of strong dominance of the convective transport mechanism, a class 
of singularly perturbed nonlinear mathematical models with a small parameter μ = Pe-1 or μ = 
Re-1 with the highest derivative is obtained. Nonstationary singularly perturbed models on the 
basis of the Burgers-Buckley-Leverett equations allow the emergence of regions of strong 
change in the solution propagating in the form of various fronts and transition layers. 

From a computational point of view, singularly perturbed problems are referred to as 
difficult problems to be solved. In particular, the difference schemes used to approximate the 
convection-diffusion equations, as a rule, have a strong dispersion, for the suppression of 
which special measures are applied. In computing practice, a wide application as a test 
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problem for the problems of the boundary layer, parabolized and complete Navier-Stokes 
equations has the Burgers equation with the corresponding boundary conditions. The 
complete non-linear Burgers equation contains a quadratic nonlinearity in the convective 
summand and a linear viscosity on the right-hand side. The solution of the Burgers equation, 
with a coefficient of viscosity tending to zero, can contain both strong (shock waves) and 
weak discontinuities, which allows one to analyze all the singularities of the solution for 
arbitrary initial data. 

Taking into account the initial and boundary conditions, the Burgers problem is formulated 
as follows: 
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3 ONE-PARAMETER FAMILIES OF TWO- AND THREE-LAYER DIFFERENCE 
SCHEMES OF THE SECOND, O(Δt2 +h2 ) 

Consider the calculation space x,t , in which a Cartesian coordinate system is set with 
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The one-parameter family of two-layer schemes for the Burgers equation, written out on a 
computational grid with fixed nodes, has the form: 
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where  σ is the weight factor, determining the degree of implicitness of the difference scheme, 
0<σ<1. For σ = 0.5 we have a symmetric Crank-Nicolson scheme with the second order of 
approximation O(Δt2+Δx2). 

Using the approach to constructing an implicit three-layer difference scheme for the linear 
transport equation, presented in [34], we write out a family of three-layer implicit schemes of 
Cabaret type, consisting of 3 parts, for the Burgers equation (1).  
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Part two – extrapolation 
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For σ1 = σ2 = 0.5 we obtain a scheme with the second order of approximation O(Δt2+Δx2).  

4 ALGORITHM OF NUMERICAL SOLUTION 

The system of difference equations (4) was solved by the Newton iterative method with the 
use of a three-diagonal sweep method at each iteration [37] to solve a system of linear 
algebraic equations. The step of integration Δτk was selected automatically based on the 
specified accuracy and the maximum number of iterations 

Algorithm for the numerical solution of an implicit three-layer scheme (5) with σ1 =σ2 = 
0.5 consists of three stages.  
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At the second stage, extrapolation of the flux variables occurs within the space-time cells. 







































;0for,2

;0for,

;0for,2

2/1
2/11

2/1
2/1

2/1
2/1

2/1
2/1

2/1
2/1

2/1
2/11

2/1
2/1

1

k
m

k
m

k
m

k
m

k
m

k
m

k
m

k
m

k
m

k
m

k
m

uuu

uuuu

uuu

u     (7) 

At the third stage, the system of the difference equations is solved, from which the 
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Just as in the case of a two-layer scheme, the iterative Newton method was used to solve 
the difference schemes (6), (8) using sweeping at each iteration. The integration step Δτk was 
selected automatically based on the specified accuracy and the maximum number of 
iterations. To achieve monotonicity of the solution in the presence of large gradients, after 
each iteration, the solution was monotonized on the basis of the maximum principle: 
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k k k 1/ 2 s 1 k k
m 1 m m 1/ 2 m m 1 m

k k k 1/ 2 s 1 k k
m 1 m m 1/ 2 m m 1 m

s 1 k 1/ 2 k k s 1 k k
m m 1/ 2 m 1 m m m 1 ms 1

m k k k 1/ 2
m 1 m m 1/ 2

min( u ,u ), for u 0,u min( u ,u );

max( u ,u ), for u 0,u max( u ,u );

u , for u 0, min( u ,u ) u max( u ,u );
u

min( u ,u ), for u

 
  

 
  

  
  


 

 

 

  


s 1 k k
m m 1 m

k k k 1/ 2 s 1 k k
m 1 m m 1/ 2 m m 1 m

s 1 k 1/ 2 k k s 1 k k
m m 1/ 2 m 1 m m m 1 m

0,u min( u ,u );

max( u ,u ), for u 0,u max( u ,u );

u , for u 0, min( u ,u ) u max( u ,u );




 
  

  
  








 


 
   

 (9) 

where s - is the iteration number. 
 

5 MODELING AND ANALYSIS OF THE QUALITY OF TWO- AND THREE-
LAYER DIFFERENCE SCHEMES ON THE GRIDS WITH FIXED NODES 

 
The developed difference schemes (4), (6-9) were used to perform a series of calculations 

with subsequent comparison and an analysis of the quality of the scheme properties. As a test 
problem, we considered a nonlinear equation (1) with an initial condition in the form of an 
asymmetric sinusoid 

   0u ( x ) u( x,0) sin(2 x ) 0.5sin( x)        (10) 

and boundary conditions: 

    0 Ru(x ,t ) u(x ,t ) 0        (11) 

The calculations were carried out on a grid with the same number of nodes – N = 2500. 
The value of μ parameter was chosen from the range  63 1010   . 

Modeling showed that two half-waves of the sinusoid moving towards each other form a 
steep front, the thickness of which is determined by the value of the parameter μ. The use of 
the two-layer Crank-Nicolson scheme (5) showed that the first parasitic oscillations on the 
upper part of the front appear at µ=10-3 (Fig. 1a). The solution u(x) obtained from the three-
layer scheme with the flux correction (6) – (9) does not have any oscillations (Fig. 1b). 

Further growth of the gradient of the solution, caused by a decrease in the parameter 
µ= 10-4 -10-6 leads to an increase in parasitic oscillations in solutions obtained from a two-
layer scheme (5), (Fig.2 – 4), which testifies to the deterioration of the dispersion properties 
of the scheme from which the three-layer scheme (6) - (9) is free, using the procedure for 
monotonization of the solution, over the whole range of the values of the parameter µ (Fig.5). 

Thus, the three-layer difference schemes of the Cabaret type, written out on the 
computational grids with fixed nodes, have a distinct advantage in the dispersion properties 
over the two-layer Crank-Nicolson schemes.  
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Fig. 1. Two-layer (a) and three-layer (b) schemes, µ=10-3 

 
However, as noted in paper [34], the monotonization of the solution after each iteration in 

the region of large gradients leads to a deviation of the result from the exact solution of the 
original system of non-linear difference equations and can hinder the convergence of the 
iterative process.  

 

 
 

Fig. 2. Two-layer scheme, µ=10-4. Spatial profiles of the solution u(x) at the moments t1-3 = 0.25, 0.63, 1.0 
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Fig. 3. Two-layer scheme, µ=10-5 . Spatial profiles of the solution u(x) at the moments t1-3 = 0.25, 0.63, 1.0 

 

Fig. 4. Two-layer scheme, µ=10-6. Spatial profiles of the solution u(x) at the moments t1-3 = 0.25, 0.63, 1.0 
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x  
Fig. 5. Three-layer scheme, µ=10-4,. Spatial profiles of the solution u(x) at the moemnts t1-3 = 0.25, 0.63, 1.0 
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In this model problem (1), (10), (11), this defect is most clearly manifested in the slowing 
down of the motion of the solution front in comparison with the front of the exact solution [1] 
(Fig. 6a, b). The deceleration depends on the value of the parameter μ. The greatest lag is 
observed at μ = 10-3 and noticeably decreases at μ = 10-4, μ = 10-5.  

 

  
Fig. 6. Exact solution (blue line with symbols) and the solution obtained using the three-layer scheme 

(red line with symbols) for (a) -µ=10-3, (b) - µ=10-4. 
 

The deviation from the exact solution in the region of large gradients is caused by the use 
of nonlinear correction of the fluxes, which is confirmed by comparing the results of 
calculations performed with monotonization of the solution and without it (Fig. 7 a, b). The 
front of the solution without the monotonization process is noticeably ahead of the front with 
monotonization. This indicates that the monotonization procedure used, despite the 
algorithmic simplicity, is not sufficiently flexible. Thus, the approach to improving the quality 
of the solution using difference schemes proposed in [28] - [34] is not free from certain 
shortcomings. 
 

  
Fig. 7. The solution obtained using the three-layer scheme with monotonization (red line with symbols) 

and without monotonization (blue line with symbols) for (a) - µ=10-3, (b) - µ=10-4. 
 

40



V. I. Mazhukin, A.V. Shapranov and E.N. Bykovskaya. 

In the present paper, as an alternative, the reduction in the approximation error is proposed 
to be carried out using the method of dynamic adaptation of computational grids [35], [36], 
[38], [39]. The dynamic adaptation method was widely used to solve one-dimensional 
gasdynamic problems [40] - [45], one-dimensional and two-dimensional equations of 
parabolic type [46] - [49], one- and two-dimensional Stefan problems with moving phase 
boundaries [50] - [56] and a number of problems of laser action on matter [57] - [61]. 

6 MODELING AND ANALYSIS OF THE QUALITY OF THE TWO- AND THREE-
LAYER DIFFERENCE SCHEMES ON THE GRIDS WITH MOVING NODES 

The dynamic adaptation method is based on the procedure for transition from physical 
space tx,  with a Cartesian coordinate system and variables (x,t) to some calculation space 

,q  with an arbitrary non-stationary coordinate system and variables (q,τ). The arbitrariness 

of a non-stationary coordinate system means that the speed of this coordinate system is 
unknown beforehand and must be determined in the course of the solution. The transition to 
an arbitrary nonstationary coordinate system makes it possible to formulate the problem of 
constructing and adapting computational grids at a differential level, because of this, in the 
resulting mathematical model, part of the differential equations describes physical processes, 
and the other describes the behavior of grid nodes [35], [40]. This allows adapting grids to 
various features of the solution, such as: large gradients [35], [36], [39] moving boundaries 
[48] - [52] and discontinuous solutions [40], [43] - [ 45]. 

The transition to an arbitrary non-stationary coordinate system is carried out by means of 
automatic transformation of coordinates with the help of the sought solution. The partial 
derivatives of the independent variables in the transition from one system to another are 
related by the following expressions: 

2

2

Q 1 1 1
=  ;     = ; =

t q x q q qx

      
          
       




  (12) 

where x / q     is the Jacobian of inverse transformation, the function Q  characterizes 
the speed of motion of an unsteady coordinate system, is unknown in advance and is to be 
determined. 

Using the relations (12) we represent the differential model (1) in the variables  ,q : 

2u Q u 1 u 1 u

q q 2 q q


    

     
         

    (13) 

x
Q




 


        (14) 

where (14) is the equation of inverse transformation with transformation function Q. The 
equation (14) is used to construct the grid that adapts to the solution. Its difference analog 
describes the dynamics of grid nodes, while the function Q  realizes controlled movement of 
grid nodes, coordinated with the dynamics of the sought solution. The coordination is 
achieved by introducing a dependence of the function Q  on the sought solution. Optimal 
transformation function Q , which ensures the complete coherence of the adaptation 
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mechanism with the desired solution, is determined from the quasi-stationary principle [36], 
[39], [48]. 

The meaning of the principle of quasi-stationarity lies in the requirement of transition to a 
non-stationary coordinate system in which the time derivatives of the solution are close to or 
equal to zero:  u = 0 . When this condition is satisfied, the equation (13) takes the form  

2Q u 1 u 1 u

q q 2 q q


   

    
       

     (15) 

and serves to determine the function Q: 

12

2

u u
Q= u re

q qq

   
   

                    
   (16) 

where re 1 is the regularizer that prevents the first derivative from going to zero. The third 
term in (16) does not play any important role and can be ignored. 

6.1 Differential approximation of difference schemes 

By analyzing the differential approximation of the three-layer difference scheme, we show 
that the function found is optimal in the sense of the quality of the solution with a minimal 
number of grid nodes. 

We introduce in the computational space q,  a computational grid q

 : 

 
1 kkk k 1 k k k2

m m 1 m 1 m
mq 2

q t
q , ;    q q q,   ,q q , t t

.2 2

m 0,1, N -1, k 0,1, ,J  




     







 
        

  
 

   

 

and consider the first part of the three-layer difference scheme for equation (15) 

k 1 2 k 1 2 k 2 k 2
k 1 k 1 k 1 k 1 k k k km m 1 m m 1
m m m 1 m 1 m m m 1 m 1

k 1 k 1 k 1 k 1
m 1/ 2 m 1/ 2 m 1/ 2 m 3/ 2

k 1 k 1 k 1 k 1
m 1/ 2 m 1/ 2 m 1/ 2 m 3/ 2

( u ) ( u ) ( u ) ( u )1 1
Q u Q u Q u Q u

q 2 2 q 2 2

u u u u2 2

2 q q

 


    

 
    

   

   
   

   
   

   
             

   

  
     

(17)
k k k k
m 1/ 2 m 1/ 2 m 1/ 2 m 3/ 2

k k k k
m 1/ 2 m 1/ 2 m 1/ 2 m 3/ 2

k 1/ 2 k 1/ 2
m 1/ 2 m 1/ 2

k 1/ 2 k 1/ 2 k 1/ 2
m 1/ 2 m 1/ 2 m 1/ 2 m 3/

q

u u u u2 2

2 q q q

u u2 2

q q




     


    

   

   

 
 

  
   

  
      

     
               

 
     

k 1/ 2 k 1/ 2
m 1/ 2 m 3/ 2

k 1/ 2
2

u u

q

 
 



  
      

 
When using the finite difference method, not the initial partial differential equation is 

solved numerically, but some modified equation, called differential approximation of the 
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difference scheme [62,63]. The right-hand side of this approximation is the approximation 
error and is equal to the difference between the original partial differential equation and its 
finite-difference analogue. An analysis of the right-hand sides of differential approximations 
makes it possible to establish the predominant contribution to the error in approximating the 
higher derivatives and associated properties of difference schemes such as dissipation and 
dispersion. It is known that if the principal term in the expression for the approximation error 
contains derivatives of even order, then the predominant properties of the difference schemes 
will be dissipative, and if the derivatives of odd order – then will be dispersive. 

Let us write down the differential approximation for the difference scheme (17). To obtain 
differential approximations, we use the standard procedure for expanding the grid functions in 
a neighborhood of the point (m,m+1/2) in a Taylor series. Omitting simple but cumbersome 
transformations, we write the differential approximation in the final form. 

2 2 3 4 3

2 3 4 3

Q u 1 u 1 u 1 u u u 1

q q 2 q q q q q q

    
     

             
                           

 (18) 

The coefficients of the derivatives on the right-hand side of Eq. (18) α, β, γ, δ are 
expressed as follows 

2 2 2 2 2

2

q u 1 q 1 q q u
4 , u Q , ,

32 q 24 q 48 96 qq

          
  

         
                      

 

In the differential approximation (18), the most important role is played by the terms on the 
right-hand side of the second and third derivative equations, characterizing the dissipation and 
dispersion of the difference scheme, respectively. The coefficients α and β, standing 
respectively before the second and third derivatives, depend on the adaptation parameters. 
This means that the dissipation and dispersion of the difference schemes depend on the 
method of adaptation and can be changed in the necessary direction. The coefficient β 
explicitly depends on the fucntion Q, which allows, using the appropriate choice of Q to 
convert the coefficient β to zero. Thus, one can almost completely get rid of the internal 
dispersion of the difference scheme. The coefficient β vanishes if the function Q is set equal 
to: 

Q= u
q

 
 

  
   

  
     (19) 

A similar analysis for a two-layer scheme was carried out in Refs. [35-36]. 

6.2 Modeling results 

We consider the possibilities of reducing the error in the approximation of two and three-
layer difference schemes by considering the numerical solution of the Burgers problem (1), 
(11), (12) using the dynamic adaptation method. For this, in the computational space  ,q  

with variables  ,q  we represent the Burgers equation (14) in a divergence form, and write 
the equation of the inverse transformation (15) in a modified, more convenient form 
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    2u Q u u u
,

q q 2 q q

 
 

      
          

     (20) 

Q
,     

q




 
 

 
   0 R    q q q ,   0      (21) 

The equations (20), (21) are supplemented by the initial 

u(q,0 ) sin( 2 q ) 0.5sin( q )       q,0 1   

and boundary conditions: 

0 Ru(q , ) u(q , ) 0        0 RQ q , Q q , 0    

The function Q was set in the form (19)  Q= u
q

 
 

  
   

  
 

6.3 Algorithm of numerical solution on a dynamic grid 

Using a computational grid with integer and half-integer nodes, we write out a family of two-
layer conservative difference schemes for the system of equations (20), (21). The functions 

k
mx , k

mu , k
mQ  are written in the integer nodes and the grid fucntions k

m 1/ 2   are written in the 

half-integer nodes  k
m 1/ 2q , . The family of the two-layer difference schemes has the form: 

   

 
   

   

k
2 2
m 1 m 1 m 1 m m m 1

m 1/ 2 m 1/ 2

m 1 m 1
k

k 1 k
m m k 1

2 2
m 1 m 1 m 1 m m m 1

m 1/ 2 m 1/ 2

m 1 m 1

u u u u u u1

2 2 2 q q
1

uQ uQ

2
u u

q
u u u u u u1

2 2 2 q q

uQ uQ

2

 
   



 


 
   



   

 

 





   

 

 

                     
    

             




 
 
 
  


 
 
 
 
 
  

 (22) 

     
k

k k 1k 1 k
m 1/ 2 m 1/ 2 m 1 m m 1 m1 Q Q Q Q

q

   



             (23) 

m m
m 1/ 2 m 1/ 2

1 1
Q u

x


   

  
     

  
 

In the calculations, the Crank-Nicolson scheme (σ = 0.5) was used with the second order of 
approximation O( 2 2q  ). Since the dynamic adaptation mechanism is formulated at the 
differential level, the main differences between the computational algorithm in the variables 
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 q, are associated with the appearance of an additional equation (21). A system of two-

layer difference schemes (22), (23) was solved by separate sweeps with internal and external 
iterations. 

The algorithm for the numerical solution of an implicit three-layer scheme, as in variables 

 x,t , consists of three stages. First, a system of nonlinear algebraic equations is solved in the 

first half-step in time, from which the conservative variables 
j 1/2
m 1/2u 
 are found. 

k 1/ 2 k 1/ 2 k k k 1 2 k 1 2
k 1 k 1 k 1 k 1m 1/ 2 m 1/ 2 m 1/ 2 m 1/ 2 m m 1
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 
 




  

   
       

 


 


 

 
 

 
      

 
 

      
 






k 1/ 2 k 1/ 2 k 1/ 2
2 m 1/ 2 m 3/ 2

k 1/ 2 k 1/ 2
m 1/ 2 m 3/ 2

k k k k
m 1/ 2 m 1/ 2 m 1/ 2 m 3/ 2

k k k k
m 1/ 2 m 1/ 2 m 1/ 2 m 3/ 2

u u2

q q

u u u u1 2 2

2 q q q

  


     

  
 

 
 

   

   

    
             

     
              

 (24) 

At the secodn stage  – extrapolation of stream variables within space-time cells is 
performed  
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  (25) 

At the third stage, the system of difference equations is solved at the second half-step so 
the conservative variables 1

21
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k
mu  are found at the new time layer 
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 (26) 
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The difference schemes of the first (24) and third (26) stages were solved together with the 
scheme (21). The principal point of the computational algorithm is the elimination from the 
solution of the procedure of non-linear flux correction (monotonization), since it turns out to 
be excessive.  

6.4 Analysis of the computaion results 

The numerical solution of problem (20) - (21) in the perameter range  3 610 10     

was carried out by means of two and three-layer difference schemes (22), (23) and (24) - (26). 
All calculations were carried out on adaptive grids with the same number of nodes. To achive 
the same precision as with the grids with fixed nodes, the number of nodes for the adaptive 
grid N = 25 turned out to be by 2 orders lower. Fig. 8,9 show the spatial profiles of the grid 

functions  u x and  x  at 4 moments of time for 410  . The results of calculations 

using the two-layer (22), (23) and three-layer (24)-(26) schemes showed a good match 
between each other and the exact solution. The profiles of the function  u x are completely 

free from the parasitic oscillations. In this case, the three-layer scheme (24) - (26) does not 
contain a flux correction procedure. As in the case of using the two-layer scheme, the 
improvement of the quality of the solution in the three-layer scheme is achieved due to the 
controlled distribution of the grid nodes, the motion of which is completely coordinated with 
the sought solution. 
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Fig. 8. Spatial profile of the function u(x) at different moments. 
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Fig. 9. Spatial profiles of the function ψ(x) at different moments. 

The dynamics of distribution of the grid nodes in the physical space tx, with variables 

 x,t  is characterized by the function  x , Fig. 9. The function  x  representing the ratio 

 x x / q    characterizes the dimensionless spatial step of the grid in the space tx,  

since q does not change with time. The function  x  shows how much the spatial grid 

step  x t  changes at each moment of time. 

The spatial profiles of  u x and  x  indicate a smooth concentration of the grid nodes in 

the region of the front of the function, which corresponds to a decrease in the grid spacing by 
3 orders of magnitude, Fig. 9, with a simultaneous increase in the grid spacing by 2-9 times in 
the region of a slow change in the solution. 

Thus, due to full conformity with the sought solution, dynamic adaptation turned out to be 
a more subtle and flexible mechanism for reducing the error of approximation of difference 
schemes in comparison with the method of nonlinear correction of fluxes. 

7 CONCLUSION 

 The families of two-layer and three-layer difference schemes of the second order for the 
complete burgers equation in fixed cartesian and arbitrary non-stationary coordinate 
systems were constructed. 

 Modeling with the subsequent analysis of its results has shown that in the cartesian 
coordinate system the quality of the numerical solution essentially depends on the quality 
of the finite-difference approximation used for the initial equation. 

 The main drawback of three-layer difference schemes is the presence in the region of 
large gradients of a difficultly removable deviation of the numerical solution from the 
exact one, which is caused by the process of forced monotonization of the solution. This 
circumstance stimulates the search for other ways of reducing the error of approximation. 
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 The use of non-stationary coordinate systems makes it possible to change the 
approximation error in the course of the solution by controlling the motion of the grid 
nodes, in contrast to stationary coordinate systems in which the approximation error is 
determined by the original structure of the difference scheme. The application of an 
arbitrary non-stationary coordinate system made it possible to create a universal dynamic 
adaptation method for a wide class of problems in mathematical physics in which the 
distribution of nodes is dependent and controlled by the sought solution. This makes it 
possible to automatically adjust the calculated grid in such a way that the approximation 
error is minimal practically regardless of the quality of the original difference scheme. 
The numerical solution of the nonlinear burgers equation with the help of two and three-
layer difference schemes on a dynamically adapting grid showed virtually complete 
coincidence of the calculations among themselves, good agreement with the exact 
solution with complete absence of oscillations in the solution. The computational grid 
contained the number of nodes (N = 25) by two orders of magnitude smaller than the grid 
with fixed nodes. 

 Dynamic adaptation of grids is an independent, flexible and the most accurate way of 
reducing the approximation error, in particular in the problems of convection-diffusion 
with the dominant convection mechanism. 
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