
MATHEMATICA MONTISNIGRI
Vol XLI

EQUATION OF STATE FOR LITHIUM IN SHOCK WAVES

K. V. KHISHCHENKO1,2

1 Joint Institute for High Temperatures of the Russian Academy of Sciences

Izhorskaya 13 Bldg 2, 125412 Moscow, Russia

e-mail: konst@ihed.ras.ru

2 Moscow Institute of Physics and Technology

Institutskiy Pereulok 9, 141700 Dolgoprudny, Moscow Region, Russia

Summary. An equation of state in the form of an analytic function of the pressure on the spe-

cific volume and the internal energy is proposed for lithium in the bcc-solid and liquid phases.

The principal Hugoniot adiabat is calculated for the metal and compared with available shock-

wave data. The results of the calculations are in good agreement with the data over the whole

range of kinematic and dynamic characteristics investigated. This equation of state can be used

effectively in simulations of shock-wave processes in lithium at high pressures.

1 INTRODUCTION

Equations of state (EOSs) of materials are necessary in hydrodynamic simulations of phys-

ical processes at high energy densities [1–3]. Such processes take place at high-velocity im-

pingement of bodies [4–11], interaction of intense laser [12–23] and particle beams [24–28]

with a condensed medium, electrical explosion of conductors under the action of high power

current pulses [29–36], etc. The adequacy of the simulation results is determined mainly by ac-

curacy of thermodynamic description of the materials response upon the changes in surrounding

conditions over a wide range of pressures and specific volumes [37, 38].

For wide-range EOS modeling, a semiempirical approach is commonly applied [1], where

a functional form of a thermodynamic potential is chosen via theoretical considerations, while

numerical coefficients in the form are determined using experimental data [39–41].

In the work, a semiempirical EOS for lithium is proposed. This metal is used as a coolant in

power plants, especially in molten salt reactors. In particular, EOS for lithium is of interest for

numerical modeling of different working regimes of such reactors.

Unlike more complex EOSs of Li [2,42–45], a simple analytic function P = P(V,E) [46–48]

is adapted for the metal, where, P is the pressure, V = ρ−1 is the specific volume, ρ is the

density, E is the specific internal energy. Thermodynamic characteristics of lithium along the

principal Hugoniot adiabat are calculated and compared with available data from shock-wave

experiments [49–52].
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2 EOS MODEL

The EOS model is formulated in the general form as

P(V,E) = Pc(V )+
Γ(V,E)

V
[E −Ec(V )]. (1)

Here, Ec and Pc = −dEc/dV are the cold components of internal energy and pressure at T = 0

given by polynomials [53–58]:

Ec(V ) =
B0cV0c

m−n

(

σ m
c

m
−

σ n
c

n

)

+Esub (2)

and

Pc(V ) =
B0cσc

m−n
(σ m

c −σ n
c ), (3)

σc = V0c/V ; V0c and B0c are the specific volume and bulk modulus at P = 0 and T = 0. The

quantity Esub has meaning of the sublimation energy; it is determined by a normalization con-

dition Ec(V0c) = 0, which gives

Esub =
B0cV0c

mn
. (4)

Parameters m and n are determined using shock-wave data for solid samples.

The coefficient Γ as a function of the volume and internal energy is defined analogously to

caloric models [56–61] in the following form:

Γ(V,E) = γi +
γc(V )− γi

1+σ−2/3[E −Ec(V )]/Ea

, (5)

where

γc(V ) = 2/3+(γ0c −2/3)
σ 2

n + ln2 σm

σ 2
n + ln2(σ/σm)

, (6)

σ =V0/V ; V0 is the specific volume under normal conditions; γc(V ) corresponds to the case of

low thermal energies, and γi characterizes the region of highly-heated matter. The value of Ea

defines the thermal energy of the transition of Γ from one limiting case to the other; it is deter-

mined from the results of shock-wave experiments at high pressures. From equations (1), (5)

and (6), one can obtain a relation of the parameter γ0c with values of the Grüneisen coefficient

γ = V (∂P/∂E)V , the internal energy and the specific volume under normal conditions (γ0, E0

and V0, respectively):

γ0c = γi +(γ0 − γi)

[

1+
E0 −Ec(V0)

Ea

]2

. (7)
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Therefore, the interpolational function (6) ensures validity of the condition γ(V0,E0) = γ0, and

gives the asymptotic value γc = 2/3 in the limiting cases of low and high compression ratios σ .

The parameters σn and σm are determined from the requirement of optimum fit to experimental

data on shock compressibility of a substance in question.

3 EOS FOR LITHIUM

Lithium in the solid phase under atmospheric pressure has a body-centered cubic (bcc) struc-

ture (T > 75 K) [62]; it melts at 454 K. Under static compression at room temperature, the bcc

phase transforms at pressure 6.9 GPa [63] to the phase with a face-centered cubic (fcc) struc-

ture. At further increase of pressure at room temperature, more crystalline phases of lithium are

observed [64–66].

Shock compressibility of lithium is studied with the use of traditional explosive systems up

to 70 GPa [49–52]. Shock compression leads to increase of temperature and melting of the bcc

phase [44].

In this work, the unified EOS for the bcc-solid and liquid phases of lithium is constructed.

The EOS coefficients are as follows:V0 = 1.8868 cm3/g, V0c = 1.8422 cm3/g, B0c = 11.887 GPa,

m = 0.67, n = 0.48, σm = 0.9, σn = 1, γ0c = 0.6, γi = 0.45 and Ea = 5 kJ/g.

Calculated principal Hugoniot adiabat of lithium is presented in figures 1–3 in comparison

with experimental data [49–52]. Calculation of the Hugoniot adiabat is performed by solving

the equation of energy conservation in the shock front [1]:

E = E0 +
1

2
(P0+P)(V0 −V ), (8)

where the left-hand side is closed by the EOS function E = E(P,V). Equation (8) and the EOS

determine the specific volume as a function of pressure along the Hugoniot adiabat for samples

of initial density ρ0 =V0
−1. The shock (Us) and particle (Up) velocities are calculated using the

equations of conservation of mass and momentum in the shock front [1]:

Us =V0

√

(P−P0)/(V0−V ), (9)

Up =
√

(P−P0)(V0 −V ). (10)

As one can see in figures 1–3, the obtained EOS provides for reliable description of thermo-

dynamic properties of the metal over the entire range of shock and particle velocities, pressures

and compression ratios investigated.
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Figure 1. The principal Hugoniot adiabat of lithium: curve corresponds to the present calculations; markers—

experimental data (I1—[49], I2—[50], I3—[51], I4—[52]).
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Figure 2. The principal Hugoniot adiabat of lithium: notations are analogous to figure 1.
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Figure 3. The cold curve (Pc) and the principal Hugoniot adiabat (H) of lithium: curves correspond to the present

calculations; markers—experimental data (I1—[49], I2—[50], I3—[51], I4—[52]).

4 CONCLUSIONS

The EOS in the form of an analytic function P = P(V,E) is created for lithium in the bcc-

solid and liquid phases. This EOS agrees well with available shock-wave data; it can be used

effectively in numerical simulations of dynamic processes in the metal at high pressures.
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