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Summary. Modeling of radiation transport often requires approximation of its results from
the detector point set to another 3D point system. In particular, modeling of the radiative
electromagnetic field envisages approximation of electron emission simulation results from
the radiation transport detector system to a differential grid used for the solution of the
Maxwell equations. The approximation of functions in the 3D geometry is a non-trivial
problem. An approach based on usage of the neural networks is developed for the solution of
the approximation problem in question. The multilayer perceptron is chosen for the
construction of the neural network. Network training is worked out by applying the algorithm
of error backpropagation. The elaborated method is applied for the approximation of the 3D
data calculated by Monte Carlo modeling of electron emission generated by X-ray radiation
from the boundary surfaces of irradiated object. The results of the modeling are demanded to
be transferred from the given detector point system to the set of the points on the 3D grid for
solution of the electromagnetic problem. The approximation is obtained as the response of the
constructed neural network. The results of approximation show applicability of the neural
networks for solving of the approximation problems in question.

1 INTRODUCTION

The effectiveness of the mathematical modeling of many physical phenomena has greatly
increased during some years due to the rapid development of the supercomputers [1-[3] and
modern paralleling technology [4]. Among the actual investigations are the interaction of
laser radiation with matter; the particle fluxes transport; the radiation propagation in technical
objects of complex geometry [5-[14] and others. The world known codes are developed for
numerical simulation of the radiation transport processes (MCNP [15], Geant-4 [16],
PENELOPE [17], EGSnrc [18] etc.).

The statistical simulation by the use of Monte Carlo method is applied in various fields of
the computational physics [5,[7-[11]. The method is convenient and usable for solving the
complex boundary problems and allows the high-performance calculation by the use of
supercomputers with heterogeneous architecture [7,[8, [11]. The effectiveness of
parallelization of the Monte Carlo calculations can reach 100% and its scalability is infinite.

The mathematical modeling often requires to solve the approximation tasks as a part of
numerical simulation [6, [10, [19,[20]. For instance, the problem of appropriate treatment of
the modeling results occurs during simulation of the radiation transport.

Let us consider the radiative electron emission problem [7,[8]. The photon propagation
through matter produces fast electron fluxes. These electrons can leave an object being under
photon radiation. Thus, the electron fluxes appear outside and in interior cavities of the
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investigated object. The scheme of the emission process is presented in fig. 1.
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Figure 1: Radiative electron emission process

Modeling of the electron emission processes requires solving the complex boundary-value
problems of the photon-electron cascade transport in 3D geometry.

Modeling of radiative electron emission includes the following stages:

— simulating the photon transport in the objects of complex inner structure with accounting
of the processes of elastic and inelastic interaction between X-rays and matter;

— modeling of generation of fast electron fluxes produced due to photo absorption and
Compton scattering of X-rays in the object;

— simulating of the electron transport in matter with taking into account the various
collision processes up to leaving the electron from the object or up to the fast electron
thermalization;

— modeling of emitted electrons registration by detecting system.

The algorithms of statistical simulation of electron emission processes are created by
developing the weight versions of the Monte Carlo method. The discrete detector system is
used for modeling of the registration of the generated electron fluxes.

The results of electron fluxes computing can play the role of initial data for the modeling
of the radiative electromagnetic field, for instance. The electromagnetic field is described by
the Maxwell equations. The approximation of the computed electron flux data from the
mentioned detector system to the differential grid being used for the solution of the Maxwell
equations is a non-trivial problem.

The technology of neural networks [21,[22] is used for the solution of the approximation
task in question. The multilayer perceptron is chosen for the neural network construction. The
network training is worked out by using the algorithm of error backpropagation [22]. The
approximation is obtained as the response of constructed neural network.

2 THE PROBLEM STATEMENT

The modeling of the radiation electron emission consists of two stages:
- the statistical simulation of photon-electron transport in an object;
- the evaluation of the flux density of electrons leaving the boundaries of irradiated
object.
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The surface oriented description of objects is used for modeling of radiation transport [9].
The discrete description of the boundary surfaces of irradiated object is implemented by the
triangulation (fig. 2).

Figure 2: Triangulation of the boundary surfaces

The model of the detector system is worked out for evaluation of the flux density of
electrons leaving the boundary surfaces of irradiated object. An example of the model is
depicted in fig. 3.

Figure 3: An example of the detector system

A set {Tk}kK:1 of detectors Ty consists of K different (generally speaking) detectors. Every

disk detector (Ty) has a radius (Rk) and a height (hy) [7]. Every detector of the system belongs
to some triangle of corresponding surface after its triangulation.

Thus, statistical evaluation of the electron fluxes is carried out by the use of described
discrete detector system.

The results of some physical process computing play often the role of initial data for
another phenomenon. Let us consider the generation of the radiative electromagnetic field
(REMF) inside and outside the irradiated object [10].

Self-consistent REMF is described by the Maxwell equations. Numerical solution of these
equations requires creation of the differential grid constructed by the use of a rectangular grid
in Cartesian coordinate system [10]. An example of the grid is presented in fig. 4.
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K
The problem of approximation of electrical current density computed in the points of the set {Tk }k= , to the

cells of rectangular electrodynamical grid is actual in that case.
This problem can be formulated as followed.
Let region QeR® be the domain of the function f (r) =f (x,y, Z), reQ and sets
Qy = {rn}ril €eQ,Q, = {rm}:=1 € Q) are known. Let f (QN ) be known. It is required to find

f (QM ) by approximating the f (QN ) from the set Q,, to the set Q,, .

The neural network technique is applied for solving this problem.
It should be noted that Q,, is called training set (TS), and Q,, is called destination set (DT).

3 THE APPROXIMATION ALGORITHM

A neural network consists of a set of formal neurons. Neurons are connected to each other
by some method. Network has layers and every layer has a few neurons. There are input layer
and output one. The rest of layers are hidden. An example of neural network topology is
presented in fig. 5.

Output
layer

Input
layer

Second
hidden layer hidden layer

Figure 5: Neural network with two hidden layers

Input information is applied for the entrance of the input layer neurons. Output information
is created by neurons of the output layer (the network response). Every neuron of previous
layer gives a signal to every neuron of the next layer.

An operation scheme of formal neuron is depicted in fig. 6.
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Figure 6: Operating model of some neuron of the layer number k

is chosen as an activation function. The output signal of k™

The function ¢(t)=

1+e™t

layeris F, = go(z W X: + b, j , where Wi are synaptic weights and by are thresholds [21].
i=1
Let F (r) be an approximation function having to be constructed by use of a neural
network as continuous mapping F : Q e R®* = R' (see section 2).
The general approach of discussed method is presented in fig. 7.

N ™y
Input signal: Transformation of signal Output signal
coordirates =9 in neural network :} (network response):
reQ) F(r)

Figure 7: The general scheme of the method

The training set Qy and f(Qn) are employed for creating the neural network by applying the
algorithm of error backpropagation [21, 22].
The goal of the algorithm is to minimize the mean-square error E

E=§f§[f(n)—F(n)]in =Qu

The minimizing process is carried out by the gradient descent method.
The network response and the error E are calculated in the forward direction. The correction
of the synaptic weights (W) is carried out in back direction:

Aw; = —7786\I\I—E;Abi = —772—5, ne (0,1) is called the rate of network training [21].
ij i
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4 THE EXAMPLE OF SOLVING THE APPROXIMATION PROBLEM

Let us consider an object having the form of a truncated cone with aluminum wall 5 mm of
thickness. The object is irradiated by X-ray plane flux of 100 keV energy. The flux density
f(Qn) of emitted electrons in the points of the detector set Qy (fig. 8) is the result of the
statistical modeling of the process in question.

Figure 8: The set of the detector points

The process of network construction is described below.

One hidden layer having 5 neurons is chosen as an initial network topology. Then the
mean-square error E is calculated on the training set Qn. Neurons and layers are added untill
the error reaches specified level (the chosen level of the error is 2%).

Firstly the neurons are added to the first hidden layer. The second layer is added when the
network error is still more than specified value and is not decreasing by rising of neurons of
the first layer (fig. 9).
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Figure 9: The process of configuration of the first hidden layer

Then the other layers are configurated (fig. 10, 11).
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Figure 10: The process of configuration of the second hidden layer
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Figure 11: The process of configuration of the third hidden layer

Total process of the network configuration is presented in fig. 12.
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Figure 12: The total process of the network configuration
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Thus, the resulting neural network has three hidden layers having 9, 6 and 4 neurons
accordingly. The network is depicted in fig. 13.

Figure 13: Final configuration of the network

Then the approximation (network response) F (r), reQ,,, is obtained by application of

constructed network (fig. 13). The destination set Qu is the set of points in edges of
electrodynamic differential grid (fig. 4). The training set and destination one are presented in
fig. 14.

Figure 14: Training set (black points) and destination set (red points)

A visual evaluating of approximation quality is carried out using the following approach. A
random point rp is chosen from the training set (reference point).
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The distance R from rg to the axis OZ is calculated. A circle of radius R is constructed in a

plane perpendicular to the axis OZ. A uniform angle grid {(9]- }jzl = {91 = 2\]—7[,...,HJ = 27[} is

created on the circle.

Two points nearest to every point of the grid {(9] }jzl are found. One point belongs to the
training set and second one belongs to the destination set. Thus, we have two arrays A; € Q,,
B, €Q,, and two arrays f(A,), F(B,) accordingly.

Then the symmetrization of the arrays f(A;) and F(B,) is carried out because the

approximated function is symmetrical with respect to the axis XOZ a priori:

fo=(f+flip(f))/2; F, =(F+ flip(F))/2.

J=180 z=57 7896

")

Figure 15: Left picture — z(ry)~58, right picture - z(ro)~91

Some results of visualization are presented in fig. 15 for various ro. Presented results
demonstrated satisfactory quality of required approximation. In addition, smoothing
properties of the developed method are shown in the fig. 15. It is significant for the statistical
modeling because of existing the non-physical fluctuations.

S CONCLUSION

Results obtained in the present paper show applicability of the neural network technology
for the solution of the problem of processing of the radiation transport modeling results by
means of the developed approach to 3D function approximation. The presented method gives
the opportunity to use the results of numerical solution of the transport problems in EMF
tasks as a current source. Moreover, the elaborated technique allows smoothing the simulation
results fluctuations generated by Monte Carlo application.

Further development of the developed approach is planned for solving the vector-function
approximation problems in 6D space (space of coordinates and pulses). The input layer will
have 6 neurons and output one will have 3 neurons in this case. It is actual, for instance, in
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numerical modeling of radiation particle velocities. The results of the method development
will be presented later.
The work was partially supported by RFBR grant Ne 15-01-03027.
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