
MATHEMATICA MONTISNIGRI    MATHEMATICAL MODELING 
Vol XXXVIII (2017)  
 

2010 Mathematics Subject Classification:  97M50, 93A30.  
Key words and Phrases: Radiative Electron Emission, Statistical Modeling, Neural Network, 3D-
approximation 

HANDLING OF THE RADIATIVE ELECTRON EMISSION 
MODELING RESULTS BY USE OF THE NEURAL NETWORKS 

V. EGOROVA, M. ZHUKOVSKIY 

 Keldysh Institute of Applied mathematics of RAS 
Moscow, Russia 

e-mail: eva24372@gmail.com , web page: http://www.keldysh.ru 
 
Summary. Modeling of radiation transport often requires approximation of its results from 
the detector point set to another 3D point system. In particular, modeling of the radiative 
electromagnetic field envisages approximation of electron emission simulation results from 
the radiation transport detector system to a differential grid used for the solution of the 
Maxwell equations. The approximation of functions in the 3D geometry is a non-trivial 
problem. An approach based on usage of the neural networks is developed for the solution of 
the approximation problem in question. The multilayer perceptron is chosen for the 
construction of the neural network. Network training is worked out by applying the algorithm 
of error backpropagation. The elaborated method is applied for the approximation of the 3D 
data calculated by Monte Carlo modeling of electron emission generated by X-ray radiation 
from the boundary surfaces of irradiated object. The results of the modeling are demanded to 
be transferred from the given detector point system to the set of the points on the 3D grid for 
solution of the electromagnetic problem. The approximation is obtained as the response of the 
constructed neural network. The results of approximation show applicability of the neural 
networks for solving of the approximation problems in question. 

1   INTRODUCTION 
The effectiveness of the mathematical modeling of many physical phenomena has greatly 

increased during some years due to the rapid development of the supercomputers [1-[3] and 
modern paralleling technology [4]. Among the actual investigations are the interaction of 
laser radiation with matter; the particle fluxes transport; the radiation propagation in technical 
objects of complex geometry [5-[14] and others. The world known codes are developed for 
numerical simulation of the radiation transport processes (MCNP [15], Geant-4 [16], 
PENELOPE [17], EGSnrc [18] etc.). 

The statistical simulation by the use of Monte Carlo method is applied in various fields of 
the computational physics [5,[7-[11]. The method is convenient and usable for solving the 
complex boundary problems and allows the high-performance calculation by the use of 
supercomputers with heterogeneous architecture [7,[8, [11]. The effectiveness of 
parallelization of the Monte Carlo calculations can reach 100% and its scalability is infinite. 

The mathematical modeling often requires to solve the approximation tasks as a part of 
numerical simulation [6, [10, [19,[20]. For instance, the problem of appropriate treatment of 
the modeling results occurs during simulation of the radiation transport. 

Let us consider the radiative electron emission problem [7,[8]. The photon propagation 
through matter produces fast electron fluxes. These electrons can leave an object being under 
photon radiation. Thus, the electron fluxes appear outside and in interior cavities of the 
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4  THE EXAMPLE OF SOLVING THE APPROXIMATION PROBLEM 
Let us consider an object having the form of a truncated cone with aluminum wall 5 mm of 

thickness. The object is irradiated by X-ray plane flux of 100 keV energy. The flux density 
f(QN) of emitted electrons in the points of the detector set QN (fig. 8) is the result of the 
statistical modeling of the process in question. 

 

Figure 8: The set of the detector points 

The process of network construction is described below. 
One hidden layer having 5 neurons is chosen as an initial network topology. Then the 

mean-square error E is calculated on the training set QN. Neurons and layers are added untill 
the error reaches specified level (the chosen level of the error is 2%). 

Firstly the neurons are added to the first hidden layer. The second layer is added when the 
network error is still more than specified value and is not decreasing by rising of neurons of 
the first layer (fig. 9). 

Figure 9: The process of configuration of the first hidden layer 

Then the other layers are configurated (fig. 10, 11). 
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Figure 10: The process of configuration of the second hidden layer 

Figure 11: The process of configuration of the third hidden layer 

Total process of the network configuration is presented in fig. 12. 

 
Figure 12: The total process of the network configuration   
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Thus, the resulting neural network has three hidden layers having 9, 6 and 4 neurons 
accordingly. The network is depicted in fig. 13. 

 

Figure 13: Final configuration of the network 

Then the approximation (network response) ( ) ∈r r, MF Q , is obtained by application of 
constructed network (fig. 13). The destination set QM is the set of points in edges of 
electrodynamic differential grid (fig. 4). The training set and destination one are presented in 
fig. 14. 

 

Figure 14: Training set (black points) and destination set (red points) 

A visual evaluating of approximation quality is carried out using the following approach. A 
random point r0 is chosen from the training set (reference point). 
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The distance R from r0 to the axis OZ is calculated. A circle of radius R is constructed in a 

plane perpendicular to the axis OZ. A uniform angle grid { } πθ θ θ π
=

⎧ ⎫= = =⎨ ⎬
⎩ ⎭

11

2
,..., 2

J

j Jj J
 is 

created on the circle. 

Two points nearest to every point of the grid { }θ
=1

J

j j
 are found. One point belongs to the 

training set and second one belongs to the destination set. Thus, we have two arrays ∈J NA Q , 
∈J MB Q  and two arrays ( )Jf A , ( )JF B  accordingly. 

Then the symmetrization of the arrays ( )Jf A  and ( )JF B  is carried out because the 
approximated function is symmetrical with respect to the axis XOZ a priori: 

( )( ) ( )( )= + = +2; 2.s sf f flip f F F flip F
 

 

Figure 15: Left picture – z(r0)~58, right picture - z(r0)~91 

Some results of visualization are presented in fig. 15 for various r0. Presented results 
demonstrated satisfactory quality of required approximation. In addition, smoothing 
properties of the developed method are shown in the fig. 15. It is significant for the statistical 
modeling because of existing the non-physical fluctuations. 

5  CONCLUSION 
Results obtained in the present paper show applicability of the neural network technology 

for the solution of the problem of processing of the radiation transport modeling results by 
means of the developed approach to 3D function approximation. The presented method gives 
the opportunity to use the results of numerical solution of the transport problems in EMF 
tasks as a current source. Moreover, the elaborated technique allows smoothing the simulation 
results fluctuations generated by Monte Carlo application. 

Further development of the developed approach is planned for solving the vector-function 
approximation problems in 6D space (space of coordinates and pulses). The input layer will 
have 6 neurons and output one will have 3 neurons in this case. It is actual, for instance, in 
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numerical modeling of radiation particle velocities. The results of the method development 
will be presented later. 

The work was partially supported by RFBR grant № 15-01-03027. 
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