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Summary. The article by mathematical simulation using quantum statistics and Fermi-Dirac 
integrals investigated narrowing band gap of silicon. As well as its dependence on the 
temperature and carrier density effects on the change in the carrier density in the conduction 
band. Particular attention is paid to the determination of the equilibrium concentration of 
charge carriers in the conduction band and the influence of the narrowing of the band gap on 
it. The narrowing values of the band gap, calculated using the theoretical model, are compared 
with the experimental results. 
 
1 INTRODUCTION 

The wide use of silicon in numerous technological applications, such as the creation of 
nanoparticles and nanostructures [1,2], metamaterials [3], the modification of the surface of 
semiconductors by laser pulses, which has aroused special interest in bio- [4] and IT-
technologies [5,6] causes interest in the properties of this semiconductor. Studies of the 
melting mechanisms of semiconductors and the properties of high-density electron-hole 
plasma remain topical. Numerous experiments [7-12] have shown that in the process of 
melting in silicon, covalent bonds are destroyed, with a change in the short-range order, 
accompanied by a sharp increase in the concentration of conduction electrons and leading to 
the transition of silicon to the metallic state. However, the role and influence of one of the 
most important fundamental characteristics of silicon of the band gap on the processes 
associated with the phase transition and in the region of higher temperatures have remained 
uncovered both experimentally and theoretically.  

The notion of a band gap arose within the framework of quantum theory [13-18] in 
connection with the need to explain the differences in the physical properties of metals and 
semiconductors in solid state physics. The most important property of both metals and 
semiconductors is electrical conductivity and its characteristic - carrier concentration. In 
determining the carrier concentration necessary to describe all the properties of 
semiconductors, the width (energy) of the band gap Eg is of great importance, since it is the 
most important characteristic of the energy structure of semiconductors. For use in 
mathematical modeling, the band gap should be represented in the form of a temperature 
dependence Eg(T) (or baric Eg(P)). In accordance with the concepts of quantum theory, when 
a crystal is formed from individual atoms, the interatomic distances decrease, and due to the 
action of the Pauli principle, allowed bands arise in which electrons can be located. The 
allowed bands are characterized by the density of electronic states. The most "deep" allowed 
bands, i.e. energy bands formed by the electrons of the deep-lying shells are the same for all 
substances. The uppermost of them - the valence band Ev in semiconductors is completely 
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filled with electrons at zero absolute temperature (T=0 °K). The next allowed zone behind it is 
not filled with electrons at the same temperature. This band is called the conduction band Ec. 
The allowed bands of a crystal are separated by band gaps, the density of electronic states in 
which is zero. The band gap largely determines the nature of the chemical bond in the 
material. To characterize the filling of electronic bands we introduce the concept of Fermi 
energy (level) EF, which separates on the energy scale the filled electronic states of the crystal 
from free ones at zero absolute temperature. Depending on the position of the Fermi level the 
allowed bands of the crystal can be filled completely or partially by electrons, or remain 
unfilled. The location of the Fermi level EF with respect to the edges of these zones 
determines the electronic nature and physical properties of the crystal. Indeed, the valence 
electrons of the crystal in the filled bands are bound and do not participate in the conductivity. 
Electrons can participate in electronic conduction, becoming free, only if they are in an 
unfilled zone [16]. Accordingly, substances in which the valence band is partially filled, or the 
conduction band and the valence band overlap, are metals. Substances in which the valence 
and conduction bands do not overlap at zero absolute temperature (T=0 °K) are 
semiconductors or dielectrics [15, 16, 17, 18]. Semiconductors and dielectrics differ in the 
value of Eg. Conditionally, dielectrics include substances with a band gap Eg>2-3 eV (1 eV= 
1.6021×10-12 Erg = 1.6021 × 10-19 J), to semiconductors with a bandgap Eg <2-3 eV. Wide-
band (1.0 eV <Eg <2-3 eV) and narrow-gap (Eg <0.1 - 0.2 eV) semiconductors are 
distinguished by the width of band gap. Substances with Eg≈0 are attributed to gapless 
semiconductors, substances with Eg≤0 (band overlap) to semimetals, the Fermi level in these 
substances is located deep in the conduction bands or in the valence band [13, 16, 17, 18].  

For semiconductors, including silicon, were carried out experiments to determine the width 
of the band gap [19-24], which for Si was determined in the temperature range from 4.2 °K to 
800 °K. Experimental studies have shown that the narrowing of the band gap depends not 
only on temperature [19-22], but also on carrier concentration [23-24]. However, a number of 
limitations of the experimental approach do not make it possible to obtain the necessary 
characteristics in the melting temperature range and, therefore, theoretical studies are required 
to determine the band gap and the carrier concentration over a wide temperature range. 

In this paper, mathematical modeling will be used - a recognized tool for theoretical 
studies of problems accompanying the use of silicon in numerous technological applications 
[25-30]. In the conditions of temperature increase, the band gap Eg(T) narrows, the carrier 
concentration reaches high values of N(T)≈1018 cm-3 and higher, which is confirmed by 
experimental studies [7-12], the electron gas degenerates, the values of Eg(T), EF(T), N(T) 
become interdependent, the classical Maxwell-Boltzmann statistics becomes unjust, which 
greatly complicates the calculation of all quantities. To solve this problem, the use of Fermi-
Dirac quantum statistics becomes fundamental. Therefore, the basis of mathematical 
modeling is the use of quantum statistics and Fermi-Dirac integrals (F-D) to take into account 
the degeneracy of the electron gas. 

This article is devoted to the study of the behavior of the band gap with increasing 
temperature and carrier concentration and its role in processes associated with a phase 
transition in the region of the equilibrium melting temperature of silicon and higher 
temperatures. Particular attention is paid to the determination of the equilibrium concentration 
of charge carriers in the conduction band and the impact on it of narrowing the band gap. We 
consider silicon with intrinsic conductivity under conditions of thermodynamic equilibrium 
and electroneutrality in the temperature range 300 °K <T <1.5×Tm. 
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2 QUANTUM APPROACH 
In the mathematical modeling of the band gap of silicon, using the statistics of electron 

gas, the central place is occupied by the law of the distribution of charge carriers over energy 
states.  

In semiconductors, unlike metals, the number of charge carriers and their mobility depend 
on temperature, defects and the presence of impurities. Under thermodynamic equilibrium 
conditions at a temperature T=Tlat=Te (Tlat is the lattice temperature, Te is the electron 
temperature), the probability of the electron filling the state with energy E is determined by 
the Fermi-Dirac distribution law using the Fermi level EF 
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where kB - Boltzmann constant. At low temperatures, the valence band of the semiconductor 
is completely occupied and, according to the Pauli principle, charge carriers cannot move 
inside the valence band. In connection with this, at low temperatures in semiconductors the 
concentration of conduction electrons is so small that they behave like a gas of noninteracting 
particles, the Fermi energy exceeds the electron energy (E-EF)<0 and the electron gas is 
nondegenerate. In this case (1) reduces to the Maxwell-Boltzmann distribution function 
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To move free carriers from the valence band to unoccupied conduction band, an additional 
finite energy is required and it exceeds the energy of the band gap, which for silicon Eg=1.17 
eV for at T = 0 °K [13]. With increasing temperature, hot electrons give off energy to the 
lattice, while the width of band gap decreases, and the concentration of free charge carriers in 
the conduction band increases, determined by the processes of generation and recombination 
of electrons from the conduction band and holes from the valence band, which occur 
continuously and in parallel, the electron gas degenerates and (E-EF)> 0. In a state of 
thermodynamic equilibrium, these opposite processes must coincide in speed, both in the 
whole and in each region of the spectrum. Such a detailed equilibrium exists when the phonon 
energy is converted into the energy of electrons and back and in any other process of energy 
transformation that can occur in a solid. From the principle of detailed balance it follows that 
there is a unique electron energy distribution characterized by a single Fermi level EF for a 
material of a given composition at a given temperature T.  

As we can see, the distribution function has the necessary minimum information for 
describing the processes taking place inside a solid body with an acceptable accuracy. 

By integrating the distribution function of the carriers (1), one can obtain many 
characteristics of the electron gas. Therefore, in determining the properties of silicon in an 
arbitrary degeneracy range from the classical Boltzmann limit to the degenerate Fermi-Dirac, 
including the weak degeneracy range (E~EF), a large role is played by the Fermi-Dirac 
integrals 
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where Γ(x) is the gamma function, j is the index of the Fermi-Dirac integral, c=e for electrons 
and c=h for holes, ε is the reduced electron energy (hole), the reduced Fermi level for 
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To determine the carrier concentration and the band gap of semiconductors we use F-D 
integral with the index j=1/2. The integral (3) with the exception of an integral with order 

0=j , cannot be calculated analytically. This involves a variety of methods for approximate 
calculation and approximation of Fermi integrals [30], among them: expansion in series [31-
33], numerical quadratures [33-35], recurrence relations and interpolation of tabulated values 
[36-38], piecewise polynomials and rational functions [39-41]. In [42,43] Fermi-Dirac 
integrals of orders j=-1/2, 1/2, 1, 3/2, 2, 5/2, 3 and 7/2, continuous analytic expressions that 
unique for each order were obtained  in a wide range of degeneracy -10 ≤η≤ 10. The 
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approximating function of F-D integral with order j=1/2 from [42,43] will be used to calculate 
the properties of the electron gas of silicon. 

Figure 1 shows the dependences of the Fermi-Dirac function of integers j and half-integral 
j/2 orders, for different values of η. The dotted lines in the figure show the high-temperature 
limit for the nondegenerate (η<0) and low-temperature limit for the degenerate (η>0) electron 
gas. It is seen that the use of approximating functions makes it possible to carry out a smooth, 
continuous transition from the domain of nondegeneracy to the degeneracy region, which is 
very important for obtaining smooth functional dependences of the properties of the electron 
gas of silicon. 

3 CALCULATION OF THE BAND GAP OF SILICON 
The band gap of silicon Eg, like other semiconductors, depends on external parameters 

such as temperature, pressure, electric, magnetic, gravitational fields, and others [13-18]. With 
increasing temperature and an increase in the concentration of charge carriers, the energy of 
band  gap tends to decrease [12, 13, 19-24]. 

Narrowing of the band gap for wide-gap semiconductors was studied by optical methods 
and by photoluminescence spectroscopy. The experimental data give an idea of narrowing of 
the band gap in the range of carrier concentrations from 4×108 -1020 cm-3 and temperatures of 
20-300 K [19, 23-24]. In [10], it was suggested that the width of the forbidden band at the 
melting temperature Tm abruptly becomes zero. 

In this paper, it is of interest to investigate the influence of the band gap of silicon on 
processes associated with the phase transition and in the region of higher temperatures. It is 
known that upon melting silicon acquires metallic properties, so the width of the forbidden 
band in the vicinity of the melting temperature should become close to or equal to zero. These 
arguments form the basis of our assumption about the observance at the equilibrium melting 
temperature of the condition 

Eg(Tm)≈0, при Tm = 1687°K    (6) 

Let us consider the basic mechanisms that affect the temperature dependence of the width 
of the band gap. 

The first mechanism is associated with the expansion of the lattice when the temperature 
rises causing displacement of position relatively the conduction band and the valence band. 
The second mechanism is associated with the enhancement of electron-lattice interaction with 
an increase in temperature [44-50]. In low-temperature region these effects make a significant 
contribution to the change in the energy of the band gap. The temperature dependence of the 
width of the band gap at low temperature is nonlinear. In high-temperature region according 
to estimates made in Ref. [48], the contribution of these mechanisms is approximately 20-
25% of total change in the energy of the band gap and temperature dependence is linear 

,   (7) 

where θ is the Debye temperature (for Si θ = 640 °K). 
At present, empirical and semiempirical dependences are used to describe the temperature 

changes in the band gap Eg (T) [44-51]. They usually use linear coefficients (for example, 
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absolute temperature and hydrostatic pressure). The most common is the Varshni 
approximation [48], which describes well first two mechanisms of narrowing of the band gap 
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where Eg,0 is the band gap at 0 °K, α and β are constants that have been evaluated 
experimentally and for silicon are: α=7.021×10-4 eV/T, β=1108K. The constant β is 
comparable with the Debye temperature with a coefficient ≈2.5 for silicon [48]. At high 

temperatures T>>β, it follows from (8), that 
T
Eg

∂

∂
−≈α , so it is temperature coefficient of the 

width of band gap. 
The third mechanism of narrowing of band gap is related to the effects of collective 

interactions and operates at sufficiently high carrier concentrations and degeneracy of the 
electron gas. The most significant contribution to narrowing the width of the band gap is due 
to the exchange interaction which leads to an empirical dependence of the form ΔEg ~ 
γ×N(T)1/3, where γ is a parameter that has the behavior of a fitting to this experiment. In [51-
55], the parameter γ is defined in the range 1×10-8 ÷7.3×10-8 eV×cm. 

Thermal and quantum mechanisms are taken into account in the relation of [26], which 
represents the modification of (8) 
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where α, β are the constants that coincide with the corresponding constants from (8), the 
constant γ=1.5×10-8 eV×cm, N(T) is the concentration of charge carriers in the conduction 
band, and T is the temperature. In this paper, two values of the fitting parameter γ were 
chosen. The first - 88.35 10−γ = ×  eV×cm - was chosen from the condition that the width of 
the band gap should be zero at equilibrium melting point Eg(Tm)=0. The second value - 
γ=4.2×10-8 eV×cm was chosen as a half of first one. 

4 CARRIER CONCENTRATION AND FERMI LEVEL 
In metals the carrier concentration is constant and can be characterized by a definite value 

of the electrochemical potential (Fermi energy), the value of which can be obtained from the 
experimental data [17]. In semimetals which have a band gap Eg≤0, the Fermi level is located 
in conduction band or in valence band, and the carrier concentration is about 1018-1020 cm-3, 
several orders of magnitude lower than typical for metals of 1022 cm-3. With increasing 
temperature, the number of carriers in semimetals increases, and the electrical conductivity 
increases [18]. 

In semiconductors, unlike metals, the carrier concentration and their mobility depends on 
the temperature and on the presence of defects and impurities. For any semiconductor, the 
most important characteristic is the concentration of electrons Ne in the conduction band or 
holes Nh in the valence band. For an intrinsic semiconductor that does not contain impurities, 
the equality of the concentrations Ne=Nh is observed. 
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The temperature dependences of the carrier concentrations in the conduction band and 
holes in the valence band are determined by integrating the distribution function of the 
carriers (1) 

( ) ( )eCe NTN η21F=       (10)  

( ) ( )hVh NTN η21F=      (11)  

where ( ) ( )1 2 1 2,e hη ηF F  - the Fermi-Dirac integrals (3) of order j=1/2 for electrons and holes, 
ηe and ηh are the reduced Fermi energy EF(T) for electrons (4) and holes (5), NC and NV are 
the density of states in the conduction band and valence band 
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where ( )1 32 3 2
e l tm M m m= ⋅  - the effective mass of the density of states of electrons in the 

conduction band, taking into account the contribution from the total set of ellipsoids M - the 
number of equivalent energy minima in the conduction band (for silicon M=6) [14, 18], ml, mt 
are respectively longitudinal and transverse masses, mh is the effective mass of the density of 
states of holes in the valence band. 

Since in thermodynamic equilibrium the probability of filling all electronic states with any 
energy can be expressed using a single normalization parameter-the Fermi level EF, then the 
temperature dependence of EF(T) is necessary to determine the carrier concentration and other 
properties of silicon. The position of the Fermi level is determined from the condition of 
electroneutrality. 

Taking into account (10) and (11), the electroneutrality condition takes the form 
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Equation (13) is greatly simplified when approximating expressions are used for integrals 
( ) ( )1 2 1 2,e hη ηF F  [27, 28] 
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where ai - coefficients of the polynomial [42,43]. The use of a continuous analytic expression 
approximating F-D integral allows us to calculate carrier concentrations and energy of the 
Fermi level with an arbitrary degeneracy degree of the electron gas. 

Taking (14) into account, equation (13) takes the form 
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Formulated equations (9) - (15) represent a mathematical description of the interrelated 
variables EF(T), N(T), Eg(T,N) that vary with temperature, the derivation of which in this 
paper was carried out from a numerical solution of equations using a computational procedure 
consisting of 2 nested iteration cycles. At one step in temperature [Ti,Ti+1], the sequence of 
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calculations looks like this. In the inner cycle, the energy of the Fermi level EF(Ti+1) is 
determined from the condition of electroneutrality (15) of the intrinsic semiconductor using 
the iterative Newton method [57]. In the outer cycle, taking into account the new value 
EF(Ti+1), the values are determined by the simple iteration method. The procedure is repeated 
until complete convergence. 

The results of the calculations are shown in Figures 2-6. 

5 MODELING RESULTS 
Figure 2 shows the temperature dependences of the band gap calculated for the Fermi-

Dirac distribution (9) with both values of the parameter γ (curves 1, 2) and for the Maxwell-
Boltzmann distribution (curve 3). In the temperature range from 300 ° K to θ, where the 
influence of quantum mechanisms is weak, the width of band gap is equally well 
approximated by all the dependences and completely coincide with the experiment [22]. 
Above the Debye temperature, the contribution of collective interaction mechanisms to the 
width of the forbidden band becomes appreciable, which is reflected in the behavior of the 
dependences. The width of the forbidden band, calculated with the Maxwell-Boltzmann 
statistics (curve 3), depends only on the temperature remains positive longer than others. The 
condition Eg(T)=0 for this dependence is satisfied at T=2400K, and at the melting point - 
Eg(Tm)=0.5 eV. The dependences calculated with Fermi-Dirac statistics (curves 1, 2), which 
take into account the effect of temperature and carrier concentration, narrow more strongly. 
For the value of parameter γ=4.2×10-8 eV×cm, Eg(T)=0 at T=2000 K, Eg(Tm)=0.248 eV. For 
the value of parameter γ=8.35×10-8 eV×cm, the width of band gap at temperature T>Tm 
becomes negative. 

Figure 3 gives a clear picture of the shape and velocity of the narrowing of the band gap 
Eg(T,N) and the position of the Fermi energy level EF(T), calculated with quantum statistics, 
relative to the edges of the valence EV(T) and conduction EC(T) bands and intrinsic Fermi 
level located in the middle of the band gap. With increasing temperature the Fermi energy 
EF(T) deviates from its own level toward the edge of the valence band EV(T), which is 
determined by lower effective mass of the density of states of the valence band. For silicon, 
the ratio of the effective masses of the electron and hole states is mde/mdh=1.89. Because of 
this, the degeneracy of the hole gas (ηh=0) occurs earlier than the degeneracy of the electron 
gas (ηe=0) (Fig. 5). 

Beginning with T=1000K the carrier concentration and the width of the forbidden band, 
calculated with quantum and classical statistics begin to differ: for Fermi-Dirac – 
N(T)=1.5×1018 cm-3, for Maxwell-Boltzmann - N(T)=9.1×1017 cm-3, Eg(T,N)=0.81 eV. 
Obtained data corresponds to appearance of a weak degeneracy, to which the values ηh≈-4 
correspond (Fig. 5). 

The region of strong degeneracy arises when the curves EF(T) and EV(T) (Figure 3), which 
corresponds to ηh=0 and to the values T=1600K, N(T)=1.1×1020 cm-3 (Fig. 4), Eg(T,N)=0.083 
eV for Fermi-Dirac distribution and NM-B(T)=3.8×1019 cm-3 (Fig. 4), Eg(T)=0.48 eV for 
Maxwell-Boltzmann. 

The same picture, with a certain shift to higher temperatures, is observed with degeneracy 
of the electron gas. Weak degeneracy: ηe≈-4, T=1090K (Fig.5), N(T)=4.5×1018 cm-3, 
Eg(T,N)=0.61 eV (Fig. 3, 4), strong degeneracy: ηe≈-0 (Fig.5), T=1920K, Eg(T,N)=-0.28 eV 
(Fig. 3, 4). 
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Fig. 2. Temperature dependence of the width of band gap of silicon. The calculation was carried 
out using: 1 - quantum statistics with γ=8.35×10-8 in (10); 2 - quantum statistics with γ=4.2×10-8 in 
(10); 3 - Maxwell-Boltzmann statistics and Varshni relation [48]. Experimental data are marked by 
unpainted circles [22]. 
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At the equilibrium melting 

temperature T=Tm=1687K in the 
variant with quantum statistics and 
fitting parameter γ=8.35×10-8 eV×cm 
the width of the forbidden band 
vanishes Eg(T,N)=0 with the carrier 
density N(T)=1.7×1020 cm-3. 

With further heating up to 
T=2000K, the width of the forbidden 
band becomes negative, and the 
carrier concentration continues to 
increase, (Fig. 3, 4) N(T)=4.2×1020 
cm-3, Eg(T,N)=-0.38 eV. With the 
Maxwell-Boltzmann statistics (Figure 
2), the width of the forbidden band 
still remains positive, and the 
concentration is much lower than in 

the Fermi-Dirac statistics: Eg(T,N)=0.24  (Fig. 2), NM-B=1.4×1020 cm-3 (Fig. 4). 
As the fitting parameter decreases by a factor of 2 γ=4.2×10-8 eV×cm, the width of the 

forbidden band vanishes Eg(T,N)=0 (Fig. 3) at a temperature T=2000K with a concentration 
N(T)=2.05×1020 cm-3 (Fig. 4). 
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statistics (1) - γ = 8.35 × 10-8 eV × cm, (2) γ = 4.2 × 10-8 eV × cm; and Maxwell-Boltzmann (3) - 
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6 CONCLUSIONS 
- Under the conditions of thermodynamic equilibrium, the degeneracy of charge 

carriers in silicon with intrinsic conductivity begins at a temperature which is 
considerably below the equilibrium melting point. This requires the use of quantum 
statistics and Fermi-Dirac integrals calculation technique when determining the 
properties of solid-state silicon. 

- The width of the band gap and its variation is one of the most important fundamental 
characteristics of silicon, which affects substantially on the concentration of electrons 
and holes and, therefore, all properties and characteristics of a solid-state 
semiconductor. 

- Concentrations of both types of carriers indicate their strong degeneracy in the 
temperature range T=1600÷2500K. Taking into accoun quantum effects allow one to 
vanish the width of the forbidden band at the point of equilibrium melting point or its 
vicinity. However, the concentrations are in the range N(T)=4.2×1020÷ 1021 cm-3, 
which is typical for semimetals with a negative band gap [18], but several orders of 
magnitude lower than the values typical for metals 1022÷ 1023 cm-3. 

- The thermodynamic equilibrium melting of pure crystalline silicon occurs in two 
stages. First, the melt acquires the properties of a semimetal with growing with a 
temperature number of carriers, and then reaching a certain temperature 
T>Tm~3000K, the molten silicon acquires metallic properties with a constant 
concentration of electrons and holes. 

- The above analysis is very important for a better understanding of the processes of 
nonequilibrium heating and melting of pure crystalline silicon, for example by 
ultrashort femtosecond laser pulses [7]. Under the condition ( )TEgL >ω , where 

Lω  is the energy of the quantum of laser radiation, in solid silicon due to 
photoeffects, the electron and hole concentrations can reached the values N(T)≈1022 
cm-3 without the lattice reaching the melting temperature, but with the achievement 
of metal properties. In the physical literature, this phenomenon was called pre-
melting or softening of the lattice up to the melting. However, these concepts are 
given without proper quantitative characteristics. 

- The acquisition of metallic properties by a semiconductor (silicon) depends on 
specific situation, in particular, related to the certain mode of action, and can occur 
before melting, at the moment of melting or after the melting. 
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