CERTAIN CONGRUENCES FOR HARMONIC NUMBERS ROMEO MEŠTROVIĆ ${ }^{1}$ AND MIOMIR ANDJIĆ ${ }^{2}$
${ }^{1}$ Maritime Faculty Kotor, University of Montenegro
85330 Kotor, Montenegro
e-mail: romeo@ac.me
${ }^{2}$ Faculty for Information Technology, University "Mediterranean"
81000 Podgorica, Montenegro
e-mail: miomir.andjic@unimediteran.net

Summary. For given positive integers n and m, the harmonic numbers of order m are those rational numbers $H_{n, m}$ defined as

$$
H_{n, m}=\sum_{k=1}^{n} \frac{1}{k^{m}} .
$$

If $\mathrm{m}=1$, then $H_{n}:=H_{n, 1}=\sum_{k=1}^{n} 1 / k$ is the nth harmonic number. In [12] Z.W. Sun obtained basic congruences modulo a prime $p>3$ for several sums involving harmonic numbers. Further generalizations and extensions of these congruences have been obtained by R. Tauraso in [16], by Z.W. Sun and L.L. Zhao in [14] and by R. Me_strovi_c in [6] and [7]. In this paper we prove that for each prime $p>3$ and all integers $m=0,1, \ldots, p-2$ there holds

$$
\sum_{k=m}^{p-1}\binom{k}{m} H_{k} \equiv \frac{(-1)^{m}}{m+1}\left(1-p H_{m+1}+\frac{p^{2}}{2}\left(H_{m+1}^{2}-H_{m+1,2}\right)\right) \quad\left(\bmod p^{3}\right)
$$

As an application, we determine the mod p^{3} congruences for the sums $\sum_{k=1}^{p-1} k^{r} H_{k}$ with $r=0,1,2,3$ and a prime $p>3$.

1 INTRODUCTION

Given positive integers n and m, the harmonic numbers of order m are those rational numbers $H_{n, m}$ defined as

$$
H_{n, m}=\sum_{k=1}^{n} \frac{1}{k^{m}}
$$

For simplicity, we will denote by

$$
H_{n}:=H_{n, 1}=\sum_{k=1}^{n} \frac{1}{k}
$$

2010 Mathematics Subject Classification: Primary 11A07; Secondary 05A10, 05A19, 11B65, 11B68.

Key words and Phrases: harmonic number, harmonic numbers of order m, congruence modulo a prime (prime power), Wolstenholme's theorem.
the nth harmonic number (in addition, we define $H_{0}=0$).
Harmonic numbers play important roles in mathematics. Throughout this paper, for a prime p and two reduced rational numbers a / b and c / d such that b and d are not divisible by p, we write $a / b \equiv c / d\left(\bmod p^{s}\right)($ with $s \in \mathbb{N})$ to mean that $a d-b c$ is divisible by p^{s}.

In 2012 Z.W. Sun [12] investigated their arithmetic properties and obtained various basic congruences modulo a prime $p>3$ for several sums involving harmonic numbers. In particular, Sun established the congruences $\sum_{k=1}^{p-1}\left(H_{k}\right)^{r}\left(\bmod p^{4-r}\right)$ for $r=1,2,3$. Further generalizations and extensions of these congruences have been obtained by R. Tauraso in [16], by Z.W. Sun and L.L. Zhao [14] and by R. Meštrović in [6] and [7]. Furthermore, Z.W. Sun [13] initiated and studied congruences involving both harmonic and Lucas sequences (especially, including Fibonacci numbers or Lucas numbers). Moreover, some congruences involving multiple harmonic sums were established in [9], [18] and [19].

Recall that Bernoulli numbers $B_{0}, B_{1}, B_{2}, \ldots$ are recursively given by

$$
B_{0}=1 \quad \text { and } \quad \sum_{k=0}^{n}\binom{n+1}{k} B_{k}=0(n=1,2,3, \ldots) .
$$

It is easy to find the values $B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30}$, and $B_{n}=0$ for odd $n \geq 3$. Furthermore, $(-1)^{n-1} B_{2 n}>0$ for all $n \geq 1$. These and many other properties can be found, for instance, in [3]. Recently, the first author of this paper in [6, Theorem 1.1] established the following six congruences involving harmonic numbers contained in the following result.

Theorem 1.1 ([6, Theorem 1.1]). Let $p>5$ be a prime, and let $q_{p}(2)=\left(2^{p-1}-1\right) / p$ be the Fermat quotient of p to base 2. Then

$$
\begin{gather*}
\sum_{k=1}^{p-1} \frac{2^{k} H_{k}}{k} \equiv-q_{p}(2)^{2}+\frac{2}{3} p q_{p}(2)^{3}+\frac{p}{12} B_{p-3} \quad\left(\bmod p^{2}\right), \tag{1}\\
\sum_{k=1}^{p-1} \frac{2^{k} H_{k}}{k^{2}} \equiv-\frac{1}{3} q_{p}(2)^{3}+\frac{23}{24} B_{p-3} \quad(\bmod p), \tag{2}\\
\sum_{k=1}^{p-1} \frac{H_{k}}{k^{2} \cdot 2^{k}} \equiv \frac{5}{8} B_{p-3} \quad(\bmod p), \tag{3}\\
\sum_{k=1}^{p-1} \frac{2^{k} H_{k}^{2}}{k} \equiv-\frac{1}{3} q_{p}(2)^{3}+\frac{11}{24} B_{p-3} \quad(\bmod p), \tag{4}\\
\sum_{k=1}^{p-1} \frac{H_{k}^{2}}{k \cdot 2^{k}} \equiv \frac{7}{8} B_{p-3} \quad(\bmod p) \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{2^{k} H_{k, 2}}{k} \equiv-\frac{1}{3} q_{p}(2)^{3}-\frac{25}{24} B_{p-3} \quad(\bmod p) \tag{6}
\end{equation*}
$$

In this paper we prove the following result.

Theorem 1.2. Let $p>3$ be a prime. Then for each $m=0,1, \ldots, p-2$ there holds

$$
\begin{equation*}
\sum_{k=m}^{p-1}\binom{k}{m} H_{k} \equiv \frac{(-1)^{m}}{m+1}\left(1-p H_{m+1}+\frac{p^{2}}{2}\left(H_{m+1}^{2}-H_{m+1,2}\right)\right) \quad\left(\bmod p^{3}\right) \tag{7}
\end{equation*}
$$

The particular cases of Theorem 1.2 yield the following result.
Corollary 1.3. Let $p>3$ be a prime. Then

$$
\begin{gather*}
\sum_{k=1}^{p-1} H_{k} \equiv 1-p \quad\left(\bmod p^{3}\right), \tag{8}\\
\sum_{k=1}^{p-1} k H_{k} \equiv-\frac{p^{2}-3 p+2}{4} \quad\left(\bmod p^{3}\right) \tag{9}\\
\sum_{k=1}^{p-1} k^{2} H_{k} \equiv \frac{15 p^{2}-17 p+6}{36} \quad\left(\bmod p^{3}\right), \tag{10}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{p-1} k^{3} H_{k} \equiv-\frac{21 p^{2}-10 p}{48} \quad\left(\bmod p^{3}\right) \tag{11}
\end{equation*}
$$

Reducing the modulus in congruences (8), (9), (10) and (11) of Corollary 1.3, immediately gives the following two corollaries.

Corollary 1.4. Let $p>3$ be a prime. Then

$$
\begin{gather*}
\sum_{k=1}^{p-1} H_{k} \equiv 1-p \quad\left(\bmod p^{2}\right) \tag{12}\\
\sum_{k=1}^{p-1} k H_{k} \equiv \frac{3 p-2}{4}, \quad\left(\bmod p^{2}\right) \tag{13}\\
\sum_{k=1}^{p-1} k^{2} H_{k} \equiv-\frac{17 p-6}{36} \quad\left(\bmod p^{2}\right), \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{p-1} k^{3} H_{k} \equiv \frac{5 p}{24} \quad\left(\bmod p^{2}\right) \tag{15}
\end{equation*}
$$

Corollary 1.5. Let $p>3$ be a prime. Then

$$
\begin{equation*}
\sum_{k=1}^{p-1} H_{k} \equiv 1 \quad(\bmod p) \tag{16}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{k=1}^{p-1} k H_{k} \equiv-\frac{1}{2} \quad(\bmod p), \tag{17}\\
& \sum_{k=1}^{p-1} k^{2} H_{k} \equiv \frac{1}{6} \quad(\bmod p), \tag{18}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{p-1} k^{3} H_{k} \equiv 0 \quad(\bmod p) \tag{19}
\end{equation*}
$$

Remark 1.5. Notice that the congruences (8) and (9) are proved by Z.W. Sun in [12, p. 419 and p. 417].

2 PROOF OF THEOREM 1.2 AND COROLLARY 1.3

For the proof of Theorem 1.2 we will need the following three auxiliary results.
Lemma 2.1 (see the identity (6.70) in [1]; also [11, p. 2]). If m and n are nonnegative integers such that $m \leq n$, then

$$
\begin{equation*}
\sum_{k=m}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right) \tag{20}
\end{equation*}
$$

The following result is well known as Wolstenholme's theorem established in 1862 by J. Wolstenholme [17].

Lemma 2.2 (see [17]; also [2], [5] and [10]). If $p>3$ is a prime, then

$$
\begin{equation*}
H_{p-1} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{21}
\end{equation*}
$$

The following result is well known and elementary.
Lemma 2.3 (see, e.g., [12, Lemma 2.1 (2.2)]). If $p \geq 3$ is a prime, then

$$
\begin{equation*}
\binom{p-1}{k} \equiv(-1)^{k}\left(1-p H_{k}+\frac{p^{2}}{2}\left(H_{k}^{2}-H_{k, 2}\right)\right) \quad\left(\bmod p^{3}\right), \tag{22}
\end{equation*}
$$

for each $k=0,1, \ldots, p-1$.

Proof of Theorem 1.2. Taking $n=p-1$ into the identity (20) of Lemma 2.1 and using the identities $\binom{p}{m+1}=\frac{p}{m+1}\binom{p-1}{m}$ and $\binom{p}{m+1}-\binom{p-1}{m}=\binom{p-1}{m+1}$, we find that

$$
\begin{align*}
\sum_{k=m}^{p-1}\binom{k}{m} H_{k} & =\binom{p}{m+1}\left(H_{p}-\frac{1}{m+1}\right) \\
& =\binom{p}{m+1}\left(H_{p-1}+\frac{1}{p}-\frac{1}{m+1}\right) \\
& =\binom{p}{m+1} H_{p-1}+\frac{1}{p}\binom{p}{m+1}-\frac{1}{m+1}\binom{p}{m+1} \tag{23}\\
& =\binom{p}{m+1} H_{p-1}+\frac{1}{m+1}\binom{p-1}{m}-\frac{1}{m+1}\binom{p}{m+1} \\
& =\binom{p}{m+1} H_{p-1}-\frac{1}{m+1}\left(\binom{p}{m+1}-\binom{p-1}{m}\right) \\
& =\frac{p}{m+1}\binom{p-1}{m} H_{p-1}-\frac{1}{m+1}\binom{p-1}{m+1} .
\end{align*}
$$

Using the congruence (21) of Lemma 2.2 and the assumption $0 \leq m \leq p-2$, we obtain

$$
\begin{equation*}
\frac{p}{m+1}\binom{p-1}{m} H_{p-1} \equiv 0 \quad\left(\bmod p^{3}\right) . \tag{24}
\end{equation*}
$$

Furthermore, by the congruence (22) of Lemma 2.3, we have

$$
\begin{equation*}
-\binom{p-1}{m+1} \equiv(-1)^{m}\left(1-p H_{m+1}+\frac{p^{2}}{2}\left(H_{m+1}^{2}-H_{m+1,2}\right)\right) \quad\left(\bmod p^{3}\right) \tag{25}
\end{equation*}
$$

Applying the congruences (24) and (25) to the right hand side of the identity (23), we immediately get

$$
\begin{equation*}
\sum_{k=m}^{p-1}\binom{k}{m} H_{k} \equiv \frac{(-1)^{m}}{m+1}\left(1-p H_{m+1}+\frac{p^{2}}{2}\left(H_{m+1}^{2}-H_{m+1,2}\right)\right) \quad\left(\bmod p^{3}\right) . \tag{26}
\end{equation*}
$$

The congruence (26) is actually the congruence (7) of Theorem 1.2. This completes the proof.

Proof of Corollary 1.3. Taking $m=0$ and $m=1$ into the congruence (7) of Theorem 1.2, we immediately give the congruences (8) and (9), respectively.

Taking $m=2$ into the congruence (7), we find that

$$
\sum_{k=2}^{p-1}\binom{k}{2} H_{k} \equiv \frac{1}{3}\left(1-\frac{11 p}{6}+p^{2}\right) \quad\left(\bmod p^{3}\right)
$$

which can be written as

$$
\begin{equation*}
\sum_{k=2}^{p-1} \frac{k^{2} H_{k}}{2}-\sum_{k=2}^{p-1} \frac{k H_{k}}{2} \equiv \frac{1}{3}\left(1-\frac{11 p}{6}+p^{2}\right) \quad\left(\bmod p^{3}\right) \tag{27}
\end{equation*}
$$

By using the congruences (27) and (9), we obtain

$$
\begin{aligned}
\sum_{k=1}^{p-1} k^{2} H_{k} & \equiv \sum_{k=1}^{p-1} k H_{k}+\frac{2}{3}\left(1-\frac{11 p}{6}+p^{2}\right) \quad\left(\bmod p^{3}\right) \\
& \equiv-\frac{p^{2}-3 p+2}{4}+\frac{2}{3}\left(1-\frac{11 p}{6}+p^{2}\right) \quad\left(\bmod p^{3}\right) \\
& =\frac{15 p^{2}-17 p+6}{36}\left(\bmod p^{3}\right)
\end{aligned}
$$

The above congruence is in fact the congruence (10) of Corollary 1.3.
Finally, in order to prove the congruence (11), we put $m=3$ into the congruence (7). This immediately yields

$$
\sum_{k=3}^{p-1}\binom{k}{3} H_{k} \equiv-\frac{1}{4}\left(1-\frac{25 p}{12}+\frac{35 p^{2}}{24}\right) \quad\left(\bmod p^{3}\right)
$$

By substituting $\binom{k}{3}=\frac{k^{3}-3 k^{2}+2 k}{6}$ into above congruence, it can be written as

$$
\begin{equation*}
\sum_{k=3}^{p-1} \frac{k^{3} H_{k}}{6}-\sum_{k=3}^{p-1} \frac{k^{2} H_{k}}{2}+\sum_{k=3}^{p-1} \frac{k H_{k}}{3} \equiv-\frac{1}{4}\left(1-\frac{25 p}{12}+\frac{35 p^{2}}{24}\right) \quad\left(\bmod p^{3}\right) \tag{28}
\end{equation*}
$$

By using the congruences (28), (9) and (10), we have

$$
\begin{aligned}
\sum_{k=1}^{p-1} k^{3} H_{k} & \equiv 3 \sum_{k=1}^{p-1} k^{2} H_{k}-2 \sum_{k=1}^{p-1} k H_{k}-\frac{3}{2}\left(1-\frac{25 p}{12}+\frac{35 p^{2}}{24}\right) \quad\left(\bmod p^{3}\right) \\
& \equiv \frac{15 p^{2}-17 p+6}{12}+\frac{p^{2}-3 p+2}{2}-\frac{35 p^{2}-50 p+24}{16} \quad\left(\bmod p^{3}\right) \\
& =-\frac{21 p^{2}-10 p}{48}\left(\bmod p^{3}\right)
\end{aligned}
$$

The above congruence coincides with the congruence (11) of Corollary 1.3, and thus, the proof is completed.

Remark 2.4. Of course, by applying the recursive method used in proof of Corollary 1.3, it is possible to determine the expression for $\sum_{k=1}^{p-1} k^{m} H_{k}\left(\bmod p^{3}\right)$ for each positive integer m, where $p>3$ is a prime. Furthermore, it is obvious that each of these congruences can be written in the form

$$
\sum_{k=1}^{p-1} k^{m} H_{k} \equiv a_{m} p^{2}+b_{m} p+c_{m} \quad\left(\bmod p^{3}\right)
$$

where a_{m}, b_{m} and c_{m} are rational numbers depending on m whose denominators are not divisible by p.

REFERENCES

[1] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics: a foundation for computer science, Addison-Wesley Publishing Company, Amsterdam, 2nd edition (1994).
[2] A. Granville, Arithmetic properties of binomial coe_cients. I. Binomial coe_cients modulo prime powers, in: Organic Mathematics (Burnaby, BC, 1995), 253-276, CMS Conf. Proc., 20, American Mathematical Society, Providence, RI (1997).
[3] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York (1982).
[4] R. Meštrović, "Proof of a congruence for harmonic numbers conjectured by Z.W. Sun", Int. J. Number Theory, 8, 1081-1085 (2012); preprint arXiv:1108.1171v1 [math.NT] (2011).
[5] R. Meštrović, "Wolstenholme's theorem: its generalizations and extensions in the last hundred and fifty years (1862-2012)", preprint arXiv:1111.3057v2 [math.NT] (2011).
[6] R. Meštrović, "On the mod p^{2} determination of $\sum_{k=1}^{p-1} H_{k} /\left(k \cdot 2^{k}\right)$: another proof of a conjecture by
Sun", Publ. Math. Debrecen, 82, 107-123 (2013); preprint arXiv:1108.3197 [math.NT] (2011).
[7] R. Meštrović, "An extension of Sury's identity and related congruences", Bull. Aust. Math. Soc., 85, 482-496 (2012).
[8] R. Meštrović, "An extension of a congruence by Tauraso", ISRN Combinatorics, 2013, Article ID 363724, 7 pages (2013); preprint arXiv:1109.3155v1 [math.NT] (2011).
[9] R. Meštrović, "Some Wolstenholme type congruences", Math. Appl., 2, 35-42 (2013)
[10] R. Meštrović, "On the mod p^{7} determination of $\binom{2 p-1}{p-1}$ ", Rocky Mount. J. Math., 44, 633-648 (2014); preprint arXiv:1108.1174 [math.NT] (2011).
[11] C. Schneider, "Symbolic summation assists combinatorics", Sèminaire Lotharingien de Combinatoire, 56, Article B56b (2007).
[12] Z.W. Sun, "Arithmetic theory of harmonic numbers", Proc. Amer. Math. Soc., 140, 415-428 (2012).
[13] Z.W. Sun, "On harmonic numbers and Lucas sequences", Publ. Math. Debrecen, 80, 25-41 (2012); preprint arXiv:1001.0348v2 [math.NT] (2011).
[14] Z.W. Sun and L.L. Zhao, "Arithmetic theory of harmonic numbers (II)", Colloq. Math., 130 6778 (2013); preprint arXiv:0911.4433v6 [math.NT] (2011).
[15] Z.W. Sun and R. Tauraso, "New congruences for central binomial coefficients", Adv. Appl. Math., 45, 125-148 (2010).
[16] R. Tauraso, "New harmonic number identities with applications", Sèm. Lothar. Combin., 63, Article B63g (2010).
[17] J. Wolstenholme, "On certain properties of prime numbers", Quart. J. Pure Appl. Math., 5, 35-39 (1862).
[18] J. Zhao, "Wolstenholme type theorem for multiple harmonic sum", Int. J. Number Theory, 4, 73106 (2008).
[19] X. Zhou and T. Cai, "A generalization of a curious congruence on harmonic sums", Proc. Amer. Math. Soc., 135, 1329-1333 (2007).

Received January 10, 2017

