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Summary. For given positive integers n and m, the harmonic numbers of order m are those 
rational numbers Hn,m defined as  
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= =∑  is the nth harmonic number. In [12] Z.W. Sun obtained 

basic congruences modulo a prime p > 3 for several sums involving harmonic numbers. 
Further generalizations and extensions of these congruences have been obtained by R. 
Tauraso in [16], by Z.W. Sun and L.L. Zhao in [14] and by R. Me_strovi_c in [6] and [7]. In 
this paper we prove that for each prime p > 3 and all integers m = 0, 1,…,p – 2 there holds 
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As an application, we determine the mod p3 congruences for the sums 1

1

p r
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=∑  with 
r = 0, 1, 2, 3 and a prime p > 3. 
 
 
1 INTRODUCTION 
Given positive integers n and m, the harmonic numbers of order m are those rational numbers 
Hn,m defined as 
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the nth harmonic number (in addition, we define H0 = 0).
Harmonic numbers play important roles in mathematics. Throughout this paper, for a

prime p and two reduced rational numbers a/b and c/d such that b and d are not divisible
by p, we write a/b ≡ c/d(mod ps) (with s ∈ N) to mean that ad− bc is divisible by ps.

In 2012 Z.W. Sun [12] investigated their arithmetic properties and obtained various
basic congruences modulo a prime p > 3 for several sums involving harmonic numbers. In
particular, Sun established the congruences

∑p−1
k=1(Hk)r (mod p4−r) for r = 1, 2, 3. Fur-

ther generalizations and extensions of these congruences have been obtained by R. Tauraso
in [16], by Z.W. Sun and L.L. Zhao [14] and by R. Meštrović in [6] and [7]. Furthermore,
Z.W. Sun [13] initiated and studied congruences involving both harmonic and Lucas se-
quences (especially, including Fibonacci numbers or Lucas numbers). Moreover, some
congruences involving multiple harmonic sums were established in [9], [18] and [19].

Recall that Bernoulli numbers B0, B1, B2, . . . are recursively given by

B0 = 1 and
n∑

k=0

(
n + 1

k

)
Bk = 0 (n = 1, 2, 3, . . .).

It is easy to find the values B0 = 1, B1 = −1
2
, B2 = 1

6
, B4 = − 1

30
, and Bn = 0 for odd

n ≥ 3. Furthermore, (−1)n−1B2n > 0 for all n ≥ 1. These and many other properties
can be found, for instance, in [3]. Recently, the first author of this paper in [6, Theorem
1.1] established the following six congruences involving harmonic numbers contained in
the following result.

Theorem 1.1 ([6, Theorem 1.1]). Let p > 5 be a prime, and let qp(2) = (2p−1 − 1)/p be
the Fermat quotient of p to base 2. Then

p−1∑
k=1

2kHk

k
≡ −qp(2)2 +

2

3
pqp(2)3 +

p

12
Bp−3 (mod p2), (1)

p−1∑
k=1

2kHk

k2
≡ −1

3
qp(2)3 +

23

24
Bp−3 (mod p), (2)

p−1∑
k=1

Hk

k2 · 2k
≡ 5

8
Bp−3 (mod p), (3)

p−1∑
k=1

2kH2
k

k
≡ −1

3
qp(2)3 +

11

24
Bp−3 (mod p), (4)

p−1∑
k=1

H2
k

k · 2k
≡ 7

8
Bp−3 (mod p) (5)

and
p−1∑
k=1

2kHk,2

k
≡ −1

3
qp(2)3 − 25

24
Bp−3 (mod p). (6)

In this paper we prove the following result.
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Theorem 1.2. Let p > 3 be a prime. Then for each m = 0, 1, . . . , p− 2 there holds

p−1∑
k=m

(
k

m

)
Hk ≡

(−1)m

m + 1

(
1− pHm+1 +

p2

2
(H2

m+1 −Hm+1,2)

)
(mod p3). (7)

The particular cases of Theorem 1.2 yield the following result.

Corollary 1.3. Let p > 3 be a prime. Then

p−1∑
k=1

Hk ≡ 1− p (mod p3), (8)

p−1∑
k=1

kHk ≡ −
p2 − 3p + 2

4
(mod p3), (9)

p−1∑
k=1

k2Hk ≡
15p2 − 17p + 6

36
(mod p3), (10)

and
p−1∑
k=1

k3Hk ≡ −
21p2 − 10p

48
(mod p3), (11)

Reducing the modulus in congruences (8), (9), (10) and (11) of Corollary 1.3, immedi-
ately gives the following two corollaries.

Corollary 1.4. Let p > 3 be a prime. Then

p−1∑
k=1

Hk ≡ 1− p (mod p2), (12)

p−1∑
k=1

kHk ≡
3p− 2

4
, (mod p2), (13)

p−1∑
k=1

k2Hk ≡ −
17p− 6

36
(mod p2), (14)

and
p−1∑
k=1

k3Hk ≡
5p

24
(mod p2). (15)

Corollary 1.5. Let p > 3 be a prime. Then

p−1∑
k=1

Hk ≡ 1 (mod p), (16)
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p−1∑
k=1

kHk ≡ −
1

2
(mod p), (17)

p−1∑
k=1

k2Hk ≡
1

6
(mod p), (18)

and

p−1∑
k=1

k3Hk ≡ 0 (mod p). (19)

Remark 1.5. Notice that the congruences (8) and (9) are proved by Z.W. Sun in [12, p.
419 and p. 417].

2 PROOF OF THEOREM 1.2 AND COROLLARY 1.3

For the proof of Theorem 1.2 we will need the following three auxiliary results.

Lemma 2.1 (see the identity (6.70) in [1]; also [11, p. 2]). If m and n are nonnegative
integers such that m ≤ n, then

n∑
k=m

(
k

m

)
Hk =

(
n + 1

m + 1

)(
Hn+1 −

1

m + 1

)
. (20)

The following result is well known as Wolstenholme’s theorem established in 1862 by
J. Wolstenholme [17].

Lemma 2.2 (see [17]; also [2], [5] and [10]). If p > 3 is a prime, then

Hp−1 ≡ 0 (mod p2). (21)

The following result is well known and elementary.

Lemma 2.3 (see, e.g., [12, Lemma 2.1 (2.2)]). If p ≥ 3 is a prime, then

(
p− 1

k

)
≡ (−1)k

(
1− pHk +

p2

2
(H2

k −Hk,2)

)
(mod p3), (22)

for each k = 0, 1, . . . , p− 1.

8

user
Stamp
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Proof of Theorem 1.2. Taking n = p − 1 into the identity (20) of Lemma 2.1 and using
the identities

(
p

m+1

)
= p

m+1

(
p−1
m

)
and

(
p

m+1

)
−
(
p−1
m

)
=
(
p−1
m+1

)
, we find that

p−1∑
k=m

(
k

m

)
Hk =

(
p

m + 1

)(
Hp −

1

m + 1

)
=

(
p

m + 1

)(
Hp−1 +

1

p
− 1

m + 1

)
=

(
p

m + 1

)
Hp−1 +

1

p

(
p

m + 1

)
− 1

m + 1

(
p

m + 1

)
(23)

=

(
p

m + 1

)
Hp−1 +

1

m + 1

(
p− 1

m

)
− 1

m + 1

(
p

m + 1

)
=

(
p

m + 1

)
Hp−1 −

1

m + 1

((
p

m + 1

)
−
(
p− 1

m

))
=

p

m + 1

(
p− 1

m

)
Hp−1 −

1

m + 1

(
p− 1

m + 1

)
.

Using the congruence (21) of Lemma 2.2 and the assumption 0 ≤ m ≤ p− 2, we obtain

p

m + 1

(
p− 1

m

)
Hp−1 ≡ 0 (mod p3). (24)

Furthermore, by the congruence (22) of Lemma 2.3, we have

−
(
p− 1

m + 1

)
≡ (−1)m

(
1− pHm+1 +

p2

2
(H2

m+1 −Hm+1,2)

)
(mod p3). (25)

Applying the congruences (24) and (25) to the right hand side of the identity (23), we
immediately get

p−1∑
k=m

(
k

m

)
Hk ≡

(−1)m

m + 1

(
1− pHm+1 +

p2

2
(H2

m+1 −Hm+1,2)

)
(mod p3). (26)

The congruence (26) is actually the congruence (7) of Theorem 1.2. This completes the
proof. �

Proof of Corollary 1.3. Taking m = 0 and m = 1 into the congruence (7) of Theorem 1.2,
we immediately give the congruences (8) and (9), respectively.

Taking m = 2 into the congruence (7), we find that

p−1∑
k=2

(
k

2

)
Hk ≡

1

3

(
1− 11p

6
+ p2

)
(mod p3),

which can be written as
p−1∑
k=2

k2Hk

2
−

p−1∑
k=2

kHk

2
≡ 1

3

(
1− 11p

6
+ p2

)
(mod p3). (27)
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By using the congruences (27) and (9), we obtain

p−1∑
k=1

k2Hk ≡
p−1∑
k=1

kHk +
2

3

(
1− 11p

6
+ p2

)
(mod p3)

≡ −p2 − 3p + 2

4
+

2

3

(
1− 11p

6
+ p2

)
(mod p3)

=
15p2 − 17p + 6

36
(mod p3).

The above congruence is in fact the congruence (10) of Corollary 1.3.
Finally, in order to prove the congruence (11), we put m = 3 into the congruence (7).

This immediately yields
p−1∑
k=3

(
k

3

)
Hk ≡ −

1

4

(
1− 25p

12
+

35p2

24

)
(mod p3).

By substituting
(
k
3

)
= k3−3k2+2k

6
into above congruence, it can be written as

p−1∑
k=3

k3Hk

6
−

p−1∑
k=3

k2Hk

2
+

p−1∑
k=3

kHk

3
≡ −1

4

(
1− 25p

12
+

35p2

24

)
(mod p3). (28)

By using the congruences (28), (9) and (10), we have

p−1∑
k=1

k3Hk ≡ 3

p−1∑
k=1

k2Hk − 2

p−1∑
k=1

kHk −
3

2

(
1− 25p

12
+

35p2

24

)
(mod p3)

≡ 15p2 − 17p + 6

12
+

p2 − 3p + 2

2
− 35p2 − 50p + 24

16
(mod p3)

= −21p2 − 10p

48
(mod p3).

The above congruence coincides with the congruence (11) of Corollary 1.3, and thus, the
proof is completed. �

Remark 2.4. Of course, by applying the recursive method used in proof of Corollary 1.3,
it is possible to determine the expression for

∑p−1
k=1 k

mHk (mod p3) for each positive integer
m, where p > 3 is a prime. Furthermore, it is obvious that each of these congruences can
be written in the form

p−1∑
k=1

kmHk ≡ amp
2 + bmp + cm (mod p3),

where am, bm and cm are rational numbers depending on m whose denominators are not
divisible by p.
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