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Summary. In this paper we constructed the solution of the spectral boundary problem on
[0, ] with zero initial function and separated boundary conditions. In this work, characteristic
function is constructed and asymptotics of its large zeroes and igenvalues asymptotics of the
operator are found. In the second part of this paper, it is assumed that two sets of eigenvalues
are given when h = 0. Under certain conditions of the linear delay, the parameters of
operators are found. It means that we solved the inverse spectral problem using a Fourier's
series method.

1. INTRODUCTION

This work is dedicated to solve the direct and inverse Sturm-Liouville problem with linear
delay t(x) = ax + B, where 0 < @ < 1,8 > 0 and separated boundary conditions.
So we will study the boundary task which is given by

—y"(x) + q()y(y(x)) = y(x) = z2y(x) €Y)
y(x) = (1 —a)x — f,q € L,[0,7]

Yr®) =0xe08), &= — @
y'(0,z) — hy(0,z) = 0,h €R 3)
y'(m,z) + Hy(m,z) =0, HER 4)

Spectral problem is defined by (1,2,3,4)and we will use abbreviation D?y = z?y.The
coefficients of h, H,; delay function 7(x) = ax + B and potential q are parameters of the
operator

D? =D?(q,h,H,a,p).
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2. DIRECT SPECTRAL PROBLEM

In this paper, under the direct spectral problem, we mean the construction of eigenvaluesof
the operator D?

2.1. Problem (1-3)

LEMMA 1. Problem (1-3) is equivalent to the Volterra integral equation

X

h 1
y(x,z) = cosxz + Esinxz + o j q(ty)sinz(x — t))y(y(ty), z)dt,. (5)
1

Actually , by the method of variation of constants in the equation (1) and then using the
initial condition (2) and the boundary condition (3), equation (5) follows directly.

Since the function y(x) = (1 — a@)x — B is strictly increasing due to the
B

1-a’

Y'(x) =1—a > 0. It also has inverse function given by y~1(x) = % + It follows

O =6=1

Further e
y 2 =(1—-a)x—(1—a)f—p and y~2(0) =L+ £

1-a (1-a)?'
We use mathematical induction to prove

B B B B(l 1)

= _lO = + + o+ — 1+—+...+—
=y (O 1l—-a (1-a)? l1-a) 1-a 1-—a (1-a)1

Because (1 — ) € (0,1) is a geometric series

o1
;(1—60"

divergent, however there is ky € N such that §, ) <7 < &y 41. Therefore

ko
Gl = | G U (Gl
k=2

The solution of integral equation (5) is obtained by the variable step method. So, forx €
(0, &, ]solution has the form

y(x,z) = cosxz + gsinxz (60)
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In the sequel, we use the functions

X
Qoo (%,2) = f (t))sin(x — t;)coszy (t)dty
&

X

az(x,z) = j(tl)sin(x — ty)sinzy(t,)dt,
1
The solution y(x, z) on the interval(¢;, &,] is given with

h 1 h
y(x,z) = cosxz + ;sinxz + o as.(x,z) + P as2(x,z) (61)
Now, we introduce the recurrence relations
X
a.(%,2) = j () ager, (), 2)dts k=23, ko
Sk

X

Qe (t,2) = f (t)awx (), 2)dt,
Sk

On the intervals (&, ¢&,,1] | = 1,2, ..., k, the solution has the form

l
h 1 h
y(x,z) = cosxz + Esinxz + Z e [askc(x, z)+ Eask“(x' Z)] (61)
k=1

2.2. Construction of characteristic functions of operator D?

In the following discussion, we will use the solution y(x, z)on the interval(fko,rt], which
is contained in (Eko, Ekoﬂ]

ko
h 1 h
y(x,z) = cosxz + ;sinxz + Z pre [askc(x, z) + ~ Gskin (x, Z)] (6k,)
k=1

After differentiation, it follows that

k
dy i - 1 h 1
I (x,z) = —zsinxz + hcosxz + z o [acsk-lc(x, z) + ~ Bk (x, Z)] (6'k,)
k=1
Where
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X
a gk-1,(x,2) = f (ty)cosz(x — ty)agk-1,(y(ty), z)dt,
Sk

a,k(x,z) = f(tl)cosz(x —tax(y(ty),z)dt; k =1k,
Sk

We will use the abbreviations

a, k-1,(,2) = a,ge-1,(2), acr(m,z) = a 4 (2)

ag (m,z) = axk (z), ag+1(m,z) = ax+1(z) k =1,k

Using the boundary condition (4) we obtain the characteristic function F as
hH
F(z) = (—z + ?) sinmz + (h + H)cosnz +
1 1 hH
+ z {Zk—1 acsk‘lc(z) + 7k [hacsk(z) + Haskc(z)] + Sk+1 Agk+1 (Z)} (7k0)
k=1

The function F is the whole exponential function with apparent singularity with z = 0.
Because F(—z) = F(z) is a even function and from F(z,) = 0 it follows F(—z,) = 0. In the
circle |z — n| = n,,, where the radius 7,is small enough, there is exactly one zero z, function
F. The result is proved for the ordinary case without delay in [3], and the constant delays
proof'is given in [9].

2.3. Partial transformation of functions F

If ky = 1 then we have:

hH
F(z) = (—z + ?) sinnz + (h + H)cosnz + a,2(z) +

+ ; (hacs(z) + Hasc(z)) + Z_I;I asz (Z) (71)
Further
1 VA
a.2(z) = > j q(t){cosz(m — (aty + B)) + cosz[r — ((2 — )ty + B)1}dt, (81)
1
a..(z) = % f q(tl){sinz(rt — (at, + ﬁ)) + sinz[n — ((2 —a)t; + [3)]}dt1 (8,)
é1
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1 s
a.2(z) = 3 f q(tl){cosz(n — (at, + ﬁ)) —cosz[r — ((2 — a)t; + B)]}dt1 (83)
1

1 YA
acs(2) =5 j q(ty){sinz(m — (at, + B)) = sinz[w — (2 — )ty + B)]}dty (84)
$1

In the following work,we will define so-called transitive function g+

1 (20-p 1 20+ 1,1
Eq( a jiZ—aq( 2—«a )’ 96_551,51(7[)}

§'(0)= iziaq[szfj, 0c %f(ﬂ),ﬂ—%r(ﬂ)} )
0, de _0,%} U[ﬂ' —%T(ﬂ'), 7Z':|

By introducing a new variable 260, = at; + f and 26, = (2 — a)t; — f and using (9)
from (8;) i = 1,4., it follows that

a.z(z) = f Gt (0)cosz(mr —26)d0 =a.* (z)

0
T

as.(z) = f G+t (0)sinz(mr — 26)do =d,* (2) (10)

0
T

a.s(z) = f G~ (0)sinz(m — 20)d0 =d, (2)

0
T

a.2(z) = f G~ (8)cosz(m — 260)d0 = —a,. (2)
0
Based on (10) function (7;) is rewritten as follows

F(z) = <—z + h7H) sinmz + (h + H)cosnz + d.* (2) +§
1 hH
+E(HC~15+(Z) + hfls_(Z)) —Z—Zﬁc_(z) (11)

Remark: For ky > 2 transformation of function F can be realized but this procedure will not
be discussed now.
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2.4. The asymptotic behaviour of large zeroes of the function F

Let us introduce the following number series

s T ™
a*,, =J-qi(9)c052n9d9; bt,, = fqi(é?)sinZanH; by =f9(7i(9)sin2n9d9 (12)
0 0 0
We know that
Cin Can Cin
zn—n+7+F+O(F), (ClSTl—>00) (13)
1s valid.

Based on (13) and (12) we can write

Tc mc c
sinmz, = (—1)" [ nln + nin +0 (%)] (as n - o) (13)
1

cosmz, = (—1)"+ 0 (ﬁ) (as n - o) (13,)

~+ ny+ 1 n 7+ n+1 T+ Cin
a C(Zn) = (_1) a in + E [(_1) T[Clnb 2n + (_1) 2C1nb2n] +0 (F) (133)

~+ n+1.+ ClndiZn

a S(Zn) =(-1) bz_n +0 n (134)

Based on the relation (13;) k = 0,1,2,3,4 from (11), we obtain

TTCon
n

F(zn) = (1) ey, + —22| + (1)1 (h + H)+(=1)"a* 5 + % [(—Dmer, b +

n

1 ~ ~ c
(—1)n+1261nb2i*] + - [(_1)n+1Hb+2n + (_1)n+1hb_2n] +0 (%) =0

Therefore,

1 1_,
Cin :g(h'i'H) +Ea 2n
h - 2 . _
Can = —(b*2n = b72n) = — (h + H)bjy + 0(b*2n) (14)

In this way, we have proved a solution and we give it in the following theorem:

Theorem 1: If g € L,[0, 7] and% < m, and & + (1_3“)2 > then zeroesz, of function F
have following asymptotics:
_ Cin Can Cin
zn—i{n+ - +n2+0(n3)} (asn — ) (15)
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where are ¢y, and c,,, given by (14).

The consequence I: Eigenvalues of operator D? have the following asymptotic decomposition

2c, C1
Ap =N+ 2¢i + nn+0(n_;)’ (as n - o) (15;)

3. INVERSE SPECTRAL TASK

Determination of the parameters g,h, H,a and [ represents the solution of inverse
spectral problem. It is based on the given values of operators. We assume that two series
AnjJ = 1,2 n € Nyof own values, which are obtained by varying the boundary conditions on
the right end of the segment, are given. In addition, an initial function is identically equal to
zero at some distance from [0,v]. So, the series have its own values 4,;and asymptotic
decomposition forms:

+

b
Anj = n? +cj+d+2n+0< n2n>’ (n - o) (16)

where cjare numbers that do not depend on n, and @*,,, is the cosine Fourier coefficient of
some of the functions g+ which is identically equal to zero in the intervalas [O, g] and [u, ).

We assume that the numbers % and p are known.

3.1. Basic identitiy

According to Hadamard's theorem, we can reconstruct the characteristic function F; of
operator D? in the form of

0 /1”. @ 2
F].(Z):nzojnn—;<1—%j>ﬂ<1—f—w> 17)

Parameters a and 8 are obtained from the system of linear equations:

p+va=v
B+am=2(m—u)

From this follows:

2(m — 2u —
Let,
B B B
1—a<nS1—a+(1—a)2 (19
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The condition (19) means that the characteristic function of the operator D?(q,h,H,a,pB)
has the form (11).Therefore, we start from the basic identities

hH;\ | -+
Fi(z)=|-z+ — | sinnz + (h + Hj)cosnz +ad."(z) +

+1(H.a *(2) + ha;~(2)) M@ (20)
7 U1i%s S z2 7€

where a F; j = 1,2 are given by (17).
3.2. Determination of coefficients h, H; j = 1,2.

From (16) it follows directly:
¢j = lim (1,; —n?)

J n—-oo

Based on the necessary conditions, from(14) and (15;) we get thefollowing equation:

2
;(h +H)=¢ j=12 (21,)
From (20) when z,, = (Zn + %) n = 1,2,..we have
_ 1 1 1 )
hH; = lim (2n+35) |5 (2n+5) + (204 5)| = ¢ j = 12 21,)
From (21,) we have:
d
Hy = d_zHl (213)
1
From (21,) follows H, — H; = g (c; —¢1) (21,)
From (213) and (21,) we get
n(c; — ¢1)
— d 21
1 Z(dz _ d]_) 1 ( 5)
and then
n(c; — ¢1)
Hy=—"——=d 21
2 Z(dz _ dl) 2 ( 6)
2 d,—d;
== 21
h=— S (217)

Conclusion: Two given series of its own values of the operator D?clearly define the

coefficients h, Hy, H,
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3.3. The formation of integral equation according to the transition function

First, we will define the function:
H,F,(2) — H1F,(2)

A(z) = 0, — K, + zsinmz — hcosnz
(22)
Fy(z) — F(z
B(z) = ZM — hsinmz — zcosnz z€C
H, — H,
From the system (20), we obtain:
i +(Z)+h &s ( )—A(z)
(23)
a. (z
a,*(z)—h CZ( ) _ B(2)
We should point out the following facts:
I a." (z) _
lima," (z) = =1limB(z) =0 (24)
z-0 z—-0
By applying partial integration, we obtain:
o n-tG0 = @ 6
a. (z coszt(m
c @ _ f G~ (0)dg ——= ™ _ f f (6,)d6,sinz (m — 26)d6
§1 Stl &
2 2
Based on (24) it follows that the integral is equal to zero:
f G- (6)d6 = 0 (25)
&
2
It follows:
)
() 2 6
a. (z
c —= -2 ] ] G~(6,)d6,sinz (m — 20)de (26)
1 &
2 2
We get:
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‘c(n)
& (Z) f f G~ (6,)d6,cosz (m — 260)d6 27)
§ &

By using (26) and (27), the relation (23) becomes a system (28)

(m)
I

a,* () + 2h f f G- (6,)d0ycosz (1 — 20)d0 = A(z)
4 4
(28)

as*(z) + 2h G~ (0,)d6;sinz (m — 20)d6 = B(z)

Nm’"\J
NI:"'\’ ®

Identities (28) are equivalent to infinite systems of equations which areobtained in:

Z, =m, mEN,.

b4 n| 6

2 2h 2

;f G*(0)cos2mbde + 7[ fq‘(el)delcOSZdeH = (—1)m;A(m)
0 o |o

T [ 6
2 4h 2

;j- g*(6)sin2mbde +?f lf G~ (61)dB;sin2mbdo | = (—l)m“EB(m)
0

Theorem 2: The following relations are valid
lim A(m) = lim B(m) =0
m-—-0oo m-—-0oo

Proof of theorem 2 follows directly from the asymptotic series 4, , the identities (17) and

the relation (22).
Consequence 2: Sequences

al, = —(_1)mA(m) (29,)
21
_1\ym+1

al, = e 2)7T B(m) (29,)

represent respectively cosine and sine Fourier's coefficients of a function f € L, [0, ].
Multiplying (29,) with cos2mx, and (29,) with sin2mx for m € N and then m = 0 from
(29,), we get the relation
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A

T 6

1 2h

Ef gt (6)ds + ?f f(q‘(el)dé'l)dH = ap
00

0

Summarizing for m we get

G (0 + 2h f G(0)d6 = f(x)
0

Respectively:

() — F(x) = —2h j G-(0)de, x € [0,x] (30)
0

Remark: The integral equation (30) is the Volterra integral equation. It is fulfilled with the
transition function §*(x) in the whole interval [0, ]. Since §*(x)is identically equal to zero

in[O,%El)U(ﬂ — %T(Tt), ], the actual significance of the equation (30) is reduced to the
. 1 1

interval [E &, m— Er(n)].

3.4. Solving the integral equation (30)

We assume h = 0
If d; = d, = 0 according to H; # H, must be h = 0, then must be H; = %Cl and H, =

s
- Cz .
2
In this case, equation (30) is simplified and becomes

70 = f), xe(36,m-2 (31)

Based on the definition of the function §* (x)which is given by (9),at a distance [— T —

ET(H)]’ the relation (31) becomes

4 = 2~y ((1 —%)x—é) e[ZE (32)

an+2f

Using (32), the potential g at a distance x € [ 7T] whenh = 0 is determined.

At a distance [El, B] the potentital g will be success1vely determined using (9).

Theorem 3 : There are single partitions of segments

51' U tk+1'tk [2 51' T(T[)] U 151)1; 0(1)

k=0
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1 1 *
_ )
551,7T - Ef(ﬂ)] = ILLJO[HI%-H’ Oy ]

where is

ay + B Q2-a)X-p

1 1
90(01)=§51 9502)=§<f1
1 1
651) = Er(n) 952) =n— T(m)

So that is valid 6@ (t;,) = 6 = 0@ (ty,,) = 6%, for every k € Ny(33).
Proof: Let's k = 0. Then 8V (¢ty) = 8V (n) = Qél) =0@(t) =0@ is

1
_1 2-5t(m+B)  am+2p
tl = (0(2)) (951)) = 22 . = 5 a

In the following, let's k = 1 . Then from (33), it follows

a’mr  2af QC-a)t,—p
00(t) =0V =c—+—+p=00() =0 =" 2T
Then we get
a’n 2a 2
2-a)? 2—-a)? 2-«a
For k = 2 in (33) we obtain:
1] a’n 2a%m 2B QC-a)t; —p
0(1) t,) = 9(1) — — 3 — 9(2)
(t2) = 6; 2(2—a)2+(2—a)2+2—a+ﬁ 2 3
From this follows:
£ = adm 2a’n 2ap 2B
37 2-a)® " 2-a)3 | (2-a)® @ 2-a
From the cases k = 0,1,2,3, we anticipate formula
a A\l 2 a -1 a -2 a
t, = + +(z—) ++—+1 34
l (Z—a)” 2—a[(2—a) (Z—a) 2—a (34)

Let us prove by using the mathematical induction that (34) is valid for every [ € N,. Since
the evidence was implemented for [ = 0,1,2,3 , we assume that (34) is valid for any /. Prove
that it is also true for [l + 1.
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From (33), we have

1 1+1 2 -1
o0 (t,) = o = —[atl+[3] {(Za_a)ln+2iﬁa (=) +-+ 1]+[5’}

According to (33) it should be equaltoel(ﬂ HI(f)l = ((2 — @ty — )
Therefore,

1+1 2B ! -1
tl+1:(2ia) n+2—a[(2fa)+(2ia) T +2T+1]

(34) is proved for any [ € Nj.
In addition, we have

{( < 'y l_l(zfa)k}=223 1-(7%) s

lim t; = lim

[—>o0 >0

2—« T 2—«a
K=0

Similarly, we can prove that

imof” =56 = fimol”
is valid.

This theorem 3 is proved.

The result of the theorem 3 allows us to constructe the potential g and to use the relation
(9) at the distance [ty41, tx], kK € N, which shows us the connection between ¢ and q.

For x € [t,, t;], we get

10 =7 (5og) v (P
Further, for x € [t3,t,]
0@ =-520(5e) e ()

Following this procedure, we obtain the potential g at a distance [tj,q,tx], kK € N using
already specified potential q at a distance[ty,q,tx], k € N. In this way we have proved our
fundamental statement which follows.

Theorem: Let two series 4,;0f eigenvalues of operators Dz(q, 0,Hj,a, ,8). Jj = 1,2are given

and let 0 < % < nand% = g 07 2 > 1 where the asymptotic relations hold
b*,
/1nj=n2+Cj+d+2n+0< nn> (n > o)

When the series a@*,,is the series of cosine coefficients Fourier's expansion of a function
g € L,[0, ], and besides such that there exist v < u such that §(x) =0 x € [O,%v] U [u, ]
then the numbers «, 5, H;, H, and potential g are uniquely defined.
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