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ON PARTIAL BILATERAL AND IMPROPER

PARTIAL BILATERAL GENERATING FUNCTIONS

INVOLVING SOME SPECIAL FUNCTIONS

ASIT KUMAR SARKAR

Abstract. A group-theoretic method of obtaining more gen-

eral class of generating function from a given class of improper
partial bilateral generating functions involving Hermite, La-

guerre and Gegenbauer polynomials are discussed.

1. Introduction

The usual generating relation involving one special function may
be called linear or unilateral generating relation. By the term usual
(proper) bilateral generating function we mean a function G(x, z, w)
which can be expanded in powers of w in the following relation

G(x, z, w) =
∞∑
n=0

anfn(x)gn(z)wn,

where an is arbitrary that is independent of x and z and fn(x), gn(z)
are two different special functions.

In particular, when two special functions are same that is fn ≡ gn,
we call the generating relation as bilinear generating relation.

1991 Mathematics Subject Classification. 33A65.
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58 ASIT KUMAR SARKAR

Unlike the usual (proper) bilateral or bilinear generating relations
[5], we shall introduce the concepts of usual (proper) partial bilateral
generating relation and improper partial bilateral generating relation.

Definition 1.1. By the term usual (proper) partial bilateral gener-
ating relation for two classical polynomials, we mean the relation:

(1.1.1) G(x, z, w) =
∞∑
n=0

anw
np

(α)
n+m(x)q

(β)
m+n(z),

where the coefficients an’s are quite arbitrary and p
(α)
n+m(x), q

(β)
m+n(z)

are any two classical polynomials of order (m+n) and of parameters
α and β respectively.

Definition 1.2. By the term improper partial bilateral generating
relation for two classical polynomials, we mean the relation:

(1.2.1) G(x, z, w) =

∞∑
n=0

anw
np

(α)
n+m(x)q

(β)
k+n(z),

where the coefficients an’s are quite arbitrary and p
(α)
n+m(x), q

(β)
k+n(z)

are any two classical polynomials of order (m + n), (k + n) and of
parameters α, β respectively.

The object of this paper is establish some general class of generat-
ing functions from a given class of improper partial bilateral generat-
ing functions.

2. Main results

a) For improper partial bilateral generating
functions.

Theorem 2.1. I there exist the following class of improper partial bi-
lateral generating functions for the Hermite and Laguerre polynomials
by means of the relation

(2.1.1) G(x, z, w) =
∞∑
n=0

anw
nHm+n(x)L

(α)
k+n(z),

where an is arbitrary, then the following general class of generating
functions hold:

exp
(
2wx− w2

)
(1− v)−(α+k+1) exp

(
− vz

1− v

)
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×G
(
x− w, z

1− v
,
wv

1− v

)
=
∞∑
n=0

∞∑
r=0

∞∑
s=0

anw
n+svn+r

(k + n+ 1)!

s!r!
Hm+n+s(x)L

(α)
k+n+r(z),

where |v| < 1.

Proof. Multiplying both sides of (2.1.1) by ymtk, we get

(2.1.2) ymtkG(x, z, w) =
∞∑
n=0

anw
n
(
Hm+n(x)ym

)(
L
(α)
k+n(z)tk

)
.

Now replacing w by wvyt in (2.1.2) we get

(2.1.3) ymtkG(x, z, wvyt)

=

∞∑
n=0

an(wv)n
(
Hm+n(x)ym+n

) (
L
(α)
k+n(z)tk+n

)
.

We now choose the following two operators R1 and R2 of one-
parameter groups ([1],[2]) namely

R1 = 2xy − y ∂
∂x

and R2 = zt
∂

∂z
+ t2

∂

∂t
+ (α+ 1− z)t

so that

R1[Hm+n(x)ym+n] = Hm+n+1(x)ym+n+1,

R2[L
(α)
k+n(z)tk+n] = (k + n+ 1)L

(α)
k+n+1(z)tk+n+1

and

exp(wR1)f(x, y) = exp(2wxy − w2y2)f(x− wy, y),

exp(vR2)f(z, t) =(1− vt)−α−1 exp

(
− vzt

1− vt

)
× f

(
z

1− vt
,

t

1− vt

)
,

where |vt| < 1, ([3], [4]).

We now operate both sides of (2.1.3) by exp(wR1) exp(vR2) and
as a result of it, the relation (2.1.3) becomes:

exp
(
2wxy − w2y2

)
(1− vt)−α−1 exp

(
− vzt

1− vt

)

132



Re
tr
ac
te
d

60 ASIT KUMAR SARKAR

× ym
(

t

1− vt

)k
G

(
z − wy, z

1− vt
,
wvyt

1− vt

)
=
∞∑
n=0

∞∑
r=0

∞∑
s=0

an(wv)n
(

(wR1)s

s!

(
Hm+n(x)ym+n

))
×
(

(vR2)r

r!

(
L
(α)
k+n(z)tk+n

))
=
∞∑
n=0

∞∑
r=0

∞∑
s=0

an
wn+svn+r

s!r!
(k + n+ 1)r

×
(
Hm+n+s(x)ym+n+s

) (
L
(α)
k+n+r(z)t

k+n+r
)
.

Now putting y = t = 1 in the above relation, we get:

exp
(
2wx− w2

)
(1− v)−(α+k+1) exp

(
− vz

1− v

)
×G

(
z − w, z

1− v
,
wv

1− v

)
=

∞∑
n=0

∞∑
r=0

∞∑
s=0

an
wn+svn+r

s!r!
(k + n+ 1)r

×Hm+n+s(x)L
(α)
k+n+r(z),

where

G(x, z, w) =

∞∑
n=0

anw
nHm+n(x)L

(α)
k+n(z) and |v| < 1. �

Theorem 2.2. If there exist the following class of improper partial
bilateral generating functions for Hermite and Gegenbauer polynomi-
als by means of the relation

(2.2.1) G(x, z, w) =
∞∑
n=0

anw
nHm+n(x)C

(α)
k+n(z),

where an is arbitrary, then the following general class of generating
functions hold:

exp
(
2wx− w2

) (
1− vz + v2

)−α− k
2

×G
(
z − w, z − v√

1− vz + v2
,

wv√
1− vz + v2

)
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=
∞∑
n=0

∞∑
r=0

∞∑
s=0

an
wn+svn+r

s!r!
(k + n+ 1)r

×Hm+n+s(x)C
(α)
k+n+r(z),

where |2vz − v2| < 1.

Proof. Multiplying both sides of (2.2.1) by ymtk, we get:

(2.2.2) ymtkG(x, z, w) =
∞∑
n=0

anw
n
(
Hm+n(x)ym

) (
C

(α)
k+n(z)tk

)
.

Now replacing w by wvyt in (2.2.2), we get

ymtkG(x, z, wvyt) =
∞∑
n=0

an(wv)n

×
(
Hm+n(x)ym+n

) (
C

(α)
k+n(z)tk+n

)
.

(2.2.3)

We now choose the following two operators R1 and R2 of one-
parameters groups ([1],[2]) namely

R1 = 2xy − y ∂
∂x

and R2 =
(
z2 − 1

)
t
∂

∂z
+ tz2

∂

∂t
+ (2α+ k)zt

so that

R1[Hm+n(x)ym+n] = Hm+n+1(x)ym+n+1,

R2[C
(α)
k+n(z)tk+n] = (k + n+ 1)C

(α)
k+n+1(z)tk+n+1

and

exp(wR1)f(x, y) = exp
(
2wxy − w2y2

)
f(x− wy, y),

exp(vR2)f(z, t) =
(
1− 2vzt+ v2t2

)−α
× f

(
− z − vt√

1− 2vzt+ v2t2
,

t√
1− 2vzt+ v2t2

)
,

where
∣∣2vzt− v2t2∣∣ < 1, ([3],[4]).

We now operate both sides of (2.2.3) by exp(wR1) exp(vR2) and
as a result of it, the relation (2.2.3) becomes

exp
(
2wxy − w2y2

)(
1−2vzt+ v2t2

)−α
ym
(

t√
1−2vzt+ v2t2

)
×G

(
x− wy, z − vt√

1− 2vzt+ v2t2
,

wvyt√
1− 2vzt+ v2t2

)
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=
∞∑
n=0

∞∑
r=0

∞∑
s=0

an(wv)n
(

(wR1)s

s!
Hm+n(x)ym+n

)
×
(

(vR2)r

r!
C

(α)
k+n(z)tk+n

)
=
∞∑
n=0

∞∑
r=0

∞∑
s=0

an
wn+svn+r

s!r!
(k + n+ 1)r

×
(
Hm+n+s(x)ym+n+s

) (
C

(α)
k+n+r(z)t

k+n+r
)
.

Now putting y = t = 1 in the above relation, we get:

exp
(
2wxy − w2

)(
1− 2vz + v2

)−α− k
2

×G
(
x− w, z − vt√

1− 2vz + v2
,

wvt√
1− 2vz + v2

)
=
∞∑
n=0

∞∑
r=0

∞∑
s=0

an
wn+svn+r

s!r!
(k + n+ 1)r

×Hm+n+s(x)C
(α)
k+n+r(z),

where

G(x, z, w) =
∞∑
n=0

anw
nHm+n(x)C

(α)
k+n(z)

and |2vz − v2| < 1. �

Theorem 2.3. If there exist the following class of improper partial
bilateral generating functions for Laguerre and Gegenbauer polynomi-
als by means of the relation

(2.3.1) G(x, z, w) =
∞∑
n=0

anw
nL

(α)
m+n(x)C

(β)
k+n(z),

where an is arbitrary, then the following general class of generating
functions hold:

(1− w)−α−m−1
(
1− 2vz + v2

)−β− k
2 exp

(
− wx

1− w

)
×G

(
x

1− w
,

z − v√
1− 2vz + v2

,
wv

(1− w)
√

1− 2vz + v2

)
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=
∞∑
n=0

∞∑
r=0

∞∑
s=0

anw
n+svn+r

(m+ n+ 1)s
s!

(m+ n+ 1)r
r!

× L(α)
m+n+s(x)C

(β)
k+n+r(z),

where |2vz − v2| < 1.

Proof. Multiplying both sides of (2.3.1) by ymtk, we get:

(2.3.2) ymtkG(x, z, w) =
∞∑
n=0

anw
n
(
L
(α)
m+n(x)ym

)(
C

(β)
k+n(z)tk

)
.

Now replacing w by wvyt in (2.3.2), we get

(2.3.3) ymtkG(x, z, wvyt) =
∞∑
n=0

an(wv)n

×
(
L
(α)
m+n(x)ym+n

)(
C

(β)
k+n(z)tk+n

)
.

We now choose the following two operators R1 and R2 of one-
parameter groups ([1],[2]) namely

R1 = xy
∂

∂x
+ y2

∂

∂y
+ (α+ 1− x)y and

R2 =
(
z2 − 1

)
t
∂

∂z
+ zt2

∂

∂t
+ (2β + k)zt,

so that

R1

[
L
(α)
m+n(x)ym+n

]
= (m+ n+ 1)L

(α)
m+n+1(x)ym+n+1,

R2

[
C

(β)
k+n(x)tk+n

]
= (k + n+ 1)C

(β)
k+n+1(z)tk+n+1

and

exp(wR1)f(x, y) = (1− wy)−α−1 exp

(
− wxy

1− wy

)
× f

(
x

1− wy
,

y

1− wy

)
,

exp(vR2)f(z, t) =
(
1− 2vzt+ v2t2

)−β
× f

(
− z − vt√

1− 2vzt+ v2t2
,

t√
1− 2vzt+ v2t2

)
,

where
∣∣2vzt− v2t2∣∣ < 1 ([3],[4]).
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We now operate both sides of (2.3.3) by exp(wR1) exp(vR2) and
as a result of it, the relation (2.3.3) reduces to

(1− wy)−α−1
(
1− 2vzt+ v2t2

)−β
exp

(
− wxy

1− wy

)
×
(

y

1− wy

)m(
t√

1− 2vzt+ v2t2

)k
×G

(
x

1− wy
,

z − vt√
1−2vzt+ v2t2

,
wvyt

(1−wy)
√

1−2vzt+ v2t2

)
=
∞∑
n=0

∞∑
r=0

∞∑
s=0

an(wv)n
(

(wR1)s

s!
L
(α)
m+n(x)ym+n

)
×
(

(vR2)r

r!
C

(β)
k+n(z)tk+n

)
=
∞∑
n=0

∞∑
r=0

∞∑
s=0

anw
n+svn+r

(m+ n+ 1)s
s!

(k + n+ 1)r
r!

× L(α)
m+n+s(x)ym+n+sC

(β)
k+n+r(z)t

k+n+r.

Now putting y = t = 1 in the above relation, we get:

(1− w)−α−m−1
(
1− 2vz + v2

)−β− k
2 exp

(
− wx

1− w

)
×G

(
x

1− w
,

z − v√
1− 2vz + v2

,
wv

(1− w)
√

1− 2vz + v2

)
=

∞∑
n=0

∞∑
r=0

∞∑
s=0

anw
n+svn+r

(m+ n+ 1)s
s!

(k + n+ 1)r
r!

× L(α)
m+n+s(x)C

(β)
k+n+r(z),

where

G(x, z, w) =

∞∑
n=0

anw
nL

(α)
m+n(x)C

(β)
k+n(z)

and |2vz − v2| < 1. �

Particular Cases. It may be of interest to point out that for k = m,
the above Theorems 2.1, 2.2 & 2.3 become nice general class of gener-
ating functions from the given class of usual (proper) partial bilateral
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generating functions, which need not be derived independently. We
state those results in the following form:

b) For proper partial bilateral generating functions.

Theorem 2′.1. If there exist the following class of (proper) partial
bilateral generating functions for Hermite and Laguerre polynomials
by means of the relation

(2′.1.1) G(x, z, w) =
∞∑
n=0

anw
nHm+n(x)L

(α)
m+n(z),

where an is arbitrary, then the following general class of generating
functions hold:

exp
(
2wx− w2

)
(1− v)−(α+m+1) exp

(
− vz

1− v

)
×G

(
x− w, z

1− v
,
wv

1− v

)
=
∞∑
n=0

∞∑
r=0

∞∑
s=0

anw
n+svn+r

(m+n+1)r
s!r!

Hm+n+s(x)L
(α)
m+n+r(z),

where |v| < 1.

Theorem 2′.2. If there exist the following class of (proper) partial
bilateral generating functions for Hermite and Gegenbauer polynomi-
als by means of the relation

(2′.2.1) G(x, z, w) =
∞∑
n=0

anw
nHm+n(x)C

(α)
m+n(z),

where an is arbitrary, then the following general class of generating
functions hold:

exp
(
2wx− w2

)(
1− 2vz + v2

)−β−m
2

×G
(
x− w, z − v√

1− 2vz + v2
,

wv√
1− 2vz + v2

)
=
∞∑
n=0

∞∑
r=0

∞∑
s=0

anw
n+svn+r

(m+ n+ 1)r
s!r!

×Hm+n+s(x)C
(α)
m+n+r(z),

where |2vz − v2| < 1.
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Theorem 2′.3. If there exist the following class of (proper) partial
bilateral generating functions for Laguerre and Gegenbauer polynomi-
als by means of the relation

(2′.3.1) G(x, z, w) =
∞∑
n=0

anw
nL

(α)
m+n(x)C

(β)
m+n(z),

where an is arbitrary, then the following general class of generating
functions hold:

(1− w)−α−m−1
(
1− 2vz + v2

)−β−m
2 exp

(
− wx

1− w

)
×G

(
x

1− w
,

z − v√
1− 2vz + v2

,
wv

(1− w)
√

1− 2vz2 + v2

)
=
∞∑
n=0

∞∑
r=0

∞∑
s=0

anw
n+svn+r

(m+ n+ 1)s
s!

(m+ n+ 1)r
r!

× L(α)
m+n+s(x)C

(β)
m+n+r(z),

where |2vz − v2| < 1.

Remark. In a similar manner some new results can be derived for
(proper) partial bilateral as well as improper partial bilinear generat-
ing functions.
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