STATEMENT OF RETRACTION

We are informed by Dr. Graeme Fairweather, Executive Editor of Mathematical Reviews, that the paper by Asit Kumar Sarkar entitled "On partial bilateral and improper partial bilateral generating functions" which appears in Mathematica Montisnigri 17(2004), 57-66, is essentially identical to the paper with the same title and by the same author which appears in Filomat 18 (2004), 41-49.

We sent an email to Mr. Sarkar about this situation and we demanded an explanation from him but we haven't received any response.

The author did not respect following requirements:

1. Authors of articles submitted to Mathematica Montisnigri are required that the same or similar article has not been published previously and is not simultaneously considered for publication elsewhere.
2. Authors of articles published in Mathematica Montisnigri should not publish the same or similar article elsewhere, unless an agreement from Mathematica Montisnigri is obtained.

Consequently, Editorial Board of Matematica Montisnigri made a decision to retract paper "On partial bilateral and improper partial bilateral generating functions" by Asit Kumar Sarkar and Mr. Sarkar will be denied to publish in Mathematica Montisnigri in the future.

Editor in Chief of Mathematica Montisnigri

Žarko Pavićević

ON PARTIAL BILATERAL AND IMPROPER PARTIAL BILATERAL GENERATING FUNCTIONS INVOLVING SOME SPECIAL FUNCTIONS

1991 Mathermatios Subject Classification. 33A65.
Key words and phrases. Improper/proper partial bilateral generating function.

Unlike the usual (proper) bilateral or bilinear generating relations [5], we shall introduce the concepts of usual (proper) partial bilateral generating relation and improper partial bilateral generating relation.
Definition 1.1. By the term usual (proper) partial bilateral generating relation for two classical polynomials, we mean the relation:

$$
\begin{equation*}
G(x, z, w)=\sum_{n=0}^{\infty} a_{n} w^{n} p_{n+m}^{(\alpha)}(x) q_{m+n}^{(\beta)}(z) \tag{1.1.1}
\end{equation*}
$$

where the coefficients a_{n} 's are quite arbitrary and $p_{n+m}^{(\alpha)}(x), q_{m+n}^{(\beta)}(z)$ are any two classical polynomials of order $(m+n)$ and of parameters α and β respectively.

Definition 1.2. By the term improper partial bilateral generating relation for two classical polynomials, we mean the relation:

$$
\begin{equation*}
G(x, z, w)=\sum_{n=0}^{\infty} a_{n} w^{n} p_{n+m}^{(\alpha)}(x) q_{k+n}^{(\beta)}(z) \tag{1.2.1}
\end{equation*}
$$

where the coefficients a_{n} 's are quite arbitrary and $p_{n+}^{(\alpha)}$ are any two classical polynomials of order $(m+n),(k+n)$ parameters α, β respectively.

The object of this paper is establish some general class of gererating functions from a given class of improper partia pilatgral generating functions.
2. Main peavits

Theorem 2.1. I there paist the following class of improper partial bilateral generating fundions the Hermite and Laguerre polynomials by means of the relation functions kold:

$$
\exp \left(2 w x=w^{2}\right)(1-v)^{-(\alpha+k+1)} \exp \left(-\frac{v z}{1-v}\right)
$$

$$
\begin{aligned}
& \times G\left(x-w, \frac{z}{1-v}, \frac{w v}{1-v}\right) \\
& =\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n} w^{n+s} v^{n+r} \frac{(k+n+1)!}{s!r!} H_{m+n+s}(x) L_{k+n+r}^{(\alpha)}(z)
\end{aligned}
$$

where $|v|<1$.
Proof. Multiplying both sides of (2.1.1) by $y^{m} t^{k}$, we get

$$
\begin{equation*}
y^{m} t^{k} G(x, z, w)=\sum_{n=0}^{\infty} a_{n} w^{n}\left(H_{m+n}(x) y^{m}\right)\left(L_{k+n}^{(\alpha)}(z) t^{k}\right) \tag{2.1.2}
\end{equation*}
$$

Now replacing w by wvyt in (2.1.2) we get

$$
\begin{align*}
& \text { (2.1.3) } y^{m} t^{k} G(x, z, w v y t) \tag{2.1.3}\\
& \qquad=\sum_{n=0}^{\infty} a_{n}(w v)^{n}\left(H_{m+n}(x) y^{m+n}\right)\left(L_{k+n}^{(\alpha)}(z) t^{k+\eta}\right) . \\
& \text { We now choose the following two operators } R_{1} \text { and } \\
& \text { parameter groups }([1],[2]) \text { namely } \\
& \left.\quad R_{1}=2 x y-y \frac{\partial}{\partial x} \text { and } R_{2}=z t \frac{\partial}{\partial z}+t^{2} \frac{\partial}{\partial t}+(\alpha-1-z) t\right)
\end{align*}
$$

so that

and

$$
\begin{gathered}
R_{1}\left[H_{m+n}(x) y^{m+n}\right]=H_{m}+1(x) y^{n+n+1} \\
R_{2}\left[L_{k+n}^{(\alpha)}(z) t^{k+n}\right]=(k+n+1) L_{k+n+1}^{(\alpha)}(z) t^{k}-n+1
\end{gathered}
$$

$\exp \left(v R_{2}\right) f(\sim, t)>\left(1-v t-\alpha-{ }^{1} \exp \left(-\frac{v z t}{1-v t}\right)\right.$

as a result of it, the relation (2.1.3) becomes:

$$
\exp \left(2 u y y-w^{2} y^{2}\right)(1-v t)^{-\alpha-1} \exp \left(-\frac{v z t}{1-v t}\right)
$$

$$
\begin{aligned}
& \times y^{m}\left(\frac{t}{1-v t}\right)^{k} G\left(z-w y, \frac{z}{1-v t}, \frac{w v y t}{1-v t}\right) \\
= & \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n}(w v)^{n}\left(\frac{\left(w R_{1}\right)^{s}}{s!}\left(H_{m+n}(x) y^{m+n}\right)\right) \\
& \times\left(\frac{\left(v R_{2}\right)^{r}}{r!}\left(L_{k+n}^{(\alpha)}(z) t^{k+n}\right)\right) \\
= & \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n} \frac{w^{n+s} v^{n+r}}{s!r!}(k+n+1)_{r} \\
& \times\left(H_{m+n+s}(x) y^{m+n+s}\right)\left(L_{k+n+r}^{(\alpha)}(z) t^{k+n+r}\right) .
\end{aligned}
$$

Now putting $y=t=1$ in the above relation, we get:
where

$$
\begin{aligned}
& \qquad \begin{array}{l}
\exp \left(2 w x-w^{2}\right)(1-v)^{-(\alpha+k+1)} \exp \left(-\frac{v z}{1-v}\right) \\
\\
\times G\left(z-w, \frac{z}{1-v}, \frac{w v}{1-v}\right) \\
= \\
\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n} \frac{w^{n+s} v^{n+r}}{s!r!}(k+n+1)_{r} \\
\\
\times H_{m+n+s}(x) L_{k+n+r}^{(\alpha)}(z)
\end{array} \\
& G(x, z, w)=
\end{aligned}
$$

Theorem 2.2. If there exast he followind class of improper partial bilateral generating functions for Hernite and Gegenbauer polynomials by means of the relation

$$
\operatorname{kp}\left(2 w x-w^{2}\right)\left(1-v z+v^{2}\right)^{-\alpha-\frac{k}{2}}
$$

$$
\sum G\left(z-w, \frac{z-v}{\sqrt{1-v z+v^{2}}}, \frac{w v}{\sqrt{1-v z+v^{2}}}\right)
$$

$$
\begin{aligned}
= & \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n} \frac{w^{n+s} v^{n+r}}{s!r!}(k+n+1)_{r} \\
& \times H_{m+n+s}(x) C_{k+n+r}^{(\alpha)}(z),
\end{aligned}
$$

where $\left|2 v z-v^{2}\right|<1$.
Proof. Multiplying both sides of (2.2.1) by $y^{m} t^{k}$, we get:

$$
\begin{equation*}
y^{m} t^{k} G(x, z, w)=\sum_{n=0}^{\infty} a_{n} w^{n}\left(H_{m+n}(x) y^{m}\right)\left(C_{k+n}^{(\alpha)}(z) t^{k}\right) \tag{2.2.2}
\end{equation*}
$$

Now replacing w by wvyt in (2.2.2), we get

$$
\begin{align*}
y^{m} t^{k} G(x, z, w v y t)= & \sum_{n=0}^{\infty} a_{n}(w v)^{n} \tag{2.2.3}\\
& \times\left(H_{m+n}(x) y^{m+n}\right)\left(C_{k+n}^{(\alpha)}(\mathbf{2}) t^{k+n}\right)
\end{align*}
$$

We now choose the following two operators R_{1} and $R_{2} \sim$ oneparameters groups ([1],[2]) namely

$$
R_{1}=2 x y-y \frac{\partial}{\partial x} \text { and } R_{2}=\left(z^{2}-1\right) t \frac{\partial}{\partial z}+t z^{2} \frac{\partial}{\partial t}(2 \alpha+k) z t
$$

so that

$$
\begin{aligned}
= & \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n}(w v)^{n}\left(\frac{\left(w R_{1}\right)^{s}}{s!} H_{m+n}(x) y^{m+n}\right) \\
& \times\left(\frac{\left(v R_{2}\right)^{r}}{r!} C_{k+n}^{(\alpha)}(z) t^{k+n}\right) \\
= & \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n} \frac{w^{n+s} v^{n+r}}{s!r!}(k+n+1)_{r} \\
& \times\left(H_{m+n+s}(x) y^{m+n+s}\right)\left(C_{k+n+r}^{(\alpha)}(z) t^{k+n+r}\right) .
\end{aligned}
$$

Now putting $y=t=1$ in the above relation, we get:

$$
\begin{aligned}
\exp & \left(2 w x y-w^{2}\right)\left(1-2 v z+v^{2}\right)^{-\alpha-\frac{k}{2}} \\
& \times G\left(x-w, \frac{z-v t}{\sqrt{1-2 v z+v^{2}}}, \frac{w v}{\sqrt{1-2 v}}\right. \\
= & \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n} \frac{w^{n+s} v^{n+r}}{s!r!}(k+n+1)_{r} \\
& \times H_{m+n+s}(x) C_{k+n+r}^{(\alpha)}(z)
\end{aligned}
$$

where

$$
\begin{aligned}
& G(x, z, w)=\sum_{n=0}^{\infty} a_{n} w^{n} H_{m+n}\left(C_{k+\eta}^{(a)}(z)\right. \\
& <1
\end{aligned}
$$

and $\left|2 v z-v^{2}\right|<1$.
Theorem 2.3. If there exist the following class of improper partial

$$
\begin{aligned}
= & \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n} w^{n+s} v^{n+r} \frac{(m+n+1)_{s}}{s!} \frac{(m+n+1)_{r}}{r!} \\
& \times L_{m+n+s}^{(\alpha)}(x) C_{k+n+r}^{(\beta)}(z)
\end{aligned}
$$

where $\left|2 v z-v^{2}\right|<1$.
Proof. Multiplying both sides of (2.3.1) by $y^{m} t^{k}$, we get:

$$
\begin{equation*}
y^{m} t^{k} G(x, z, w)=\sum_{n=0}^{\infty} a_{n} w^{n}\left(L_{m+n}^{(\alpha)}(x) y^{m}\right)\left(C_{k+n}^{(\beta)}(z) t^{k}\right) \tag{2.3.2}
\end{equation*}
$$

Now replacing w by wvyt in (2.3.2), we get

$$
\begin{equation*}
y^{m} t^{k} G(x, z, w v y t)=\sum_{n=0}^{\infty} a_{n}(w v)^{n} \tag{2.3.3}
\end{equation*}
$$

We now choose the following
parameter groups $([1],[2])$ namely

$$
\begin{aligned}
& \quad n=0 \\
& \times\left(L_{m+n}^{(\alpha)}(x) y^{m+n}\right)\left(C_{k+n}^{(\beta)}(z) t^{k+}\right) \\
& \text { ollowing two operators } R_{1} \text { and } R_{2} \text { of one- } \\
& \text { namely }
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}=x y \frac{\partial}{\partial x}+y^{2} \frac{\partial}{\partial y}+(\alpha+1-x) y \\
& R_{2}=\left(z^{2}-1\right) t \frac{\partial}{\partial z}+z t^{2} \frac{\partial}{\partial t}+(\alpha \beta+
\end{aligned}
$$

We now operate both sides of (2.3.3) by $\exp \left(w R_{1}\right) \exp \left(v R_{2}\right)$ and as a result of it, the relation (2.3.3) reduces to

$$
\begin{aligned}
& (1-w y)^{-\alpha-1}\left(1-2 v z t+v^{2} t^{2}\right)^{-\beta} \exp \left(-\frac{w x y}{1-w y}\right) \\
& \times\left(\frac{y}{1-w y}\right)^{m}\left(\frac{t}{\sqrt{1-2 v z t+v^{2} t^{2}}}\right)^{k} \\
& \times G\left(\frac{x}{1-w y}, \frac{z-v t}{\sqrt{1-2 v z t+v^{2} t^{2}}}, \frac{w v y t}{(1-w y) \sqrt{1-2 v z t+v^{2} t^{2}}}\right) \\
& =\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n}(w v)^{n}\left(\frac{\left(w R_{1}\right)^{s}}{s!} L_{m+n}^{(\alpha)}(x) y^{m+n}\right) \\
& \times\left(\frac{\left(v R_{2}\right)^{r}}{r!} C_{k+n}^{(\beta)}(z) t^{k+n}\right) \\
& \left.=\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n} w^{n+s} v^{n+r} \frac{(m+n+1)_{s}}{s!} \frac{(k+n+1)_{r}}{r!}\right) \\
& \times L_{m+n+s}^{(\alpha)}(x) y^{m+n+s} C_{k+n+r}^{(\beta)}(z) t^{k+n+r}
\end{aligned}
$$

Particular Cases. It may be of interest to point out that for $k=m$, the above Theoroms 2.1, $2.2 \& 2.3$ become nice general class of generating functions from the given class of usual (proper) partial bilateral
generating functions, which need not be derived independently. We state those results in the following form:

b) For proper partial bilateral generating functions.

Theorem $\mathbf{2}^{\prime} .1$. If there exist the following class of (proper) partial bilateral generating functions for Hermite and Laguerre polynomials by means of the relation

$$
G(x, z, w)=\sum_{n=0}^{\infty} a_{n} w^{n} H_{m+n}(x) L_{m+n}^{(\alpha)}(z)
$$

where a_{n} is arbitrary, then the following general class of generating functions hold:

$$
\exp \left(2 w x-w^{2}\right)(1-v)^{-(\alpha+m+1)} \exp \left(-\frac{v z}{1-v}\right)
$$

$$
\times G\left(x-w, \frac{z}{1-v}, \frac{w v}{1-v}\right)
$$

$$
=\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n} w^{n+s} v^{n+r} \frac{(m+n+1)_{r}}{s!r!} H_{m+n+s}(x)
$$

$$
\text { where }|v|<1
$$

Theorem 2'.2. If there exist the following ctass of (proper) partial bilateral generating functions for Hermite akd Gepenbuc) polynomials by means of the relation

where a_{n} is arbit

Theorem $\mathbf{2}^{\prime} .3$. If there exist the following class of (proper) partial bilateral generating functions for Laguerre and Gegenbauer polynomials by means of the relation

$$
G(x, z, w)=\sum_{n=0}^{\infty} a_{n} w^{n} L_{m+n}^{(\alpha)}(x) C_{m+n}^{(\beta)}(z)
$$

where a_{n} is arbitrary, then the following general class of generating functions hold:

$$
\begin{aligned}
& (1-w)^{-\alpha-m-1}\left(1-2 v z+v^{2}\right)^{-\beta-\frac{m}{2}} \exp \left(-\frac{w x}{1-w}\right) \\
& \quad \times G\left(\frac{x}{1-w}, \frac{z-v}{\sqrt{1-2 v z+v^{2}}}, \frac{w v}{(1-w) \sqrt{1-2 v z^{2}+v^{2}}}\right) \\
& =\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} a_{n} w^{n+s} v^{n+r} \frac{(m+n+1)_{s}}{s!} \frac{(m+n+1)_{r}}{r!} \\
& \quad \times L_{m+n+s}^{(\alpha)}(x) C_{m+n+r}^{(\beta)}(z)
\end{aligned}
$$

where $\left|2 v z-v^{2}\right|<1$.
Remark. In a similar manner some new results can be derived for (proper) partial bilateral as well as improper partial bilinear gengrating functions.

[2] McBridge E. B., Obtaining generating functions, Springer-Verlag, New York - Berlin, 1971.
[3] Miller Jr. W., Lie theory and special functions cademic Press, New York,
1968. 1968.
[4] Rainville E. D., Special urctions, Ohelsea Publ. Co., New York, 1971.
[5] Sarkar S. and Chatterea S. 14., Extensions of a class of bilateral generating relations for certain specia/ functopns by group-theoretic method, Pure Mat. Manıscript, $9(1990-91) 251-259$.
Received April 2,2001
Department OF MATHEMATICS, WOMEN's CHR
E-mail address asit_kumar_sarkar@yahoo.com

