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Summary. Solution of the time dependent spatially uniform nonlinear collision kinetic equa-
tion in the course of heating is studied numerically. Coulomb collisions are treated with the 
Landau-Fokker-Planck collision integral. The considered heating source is a quasilinear 
diffusion operator with variable coefficient acting in a full velocity space. DSMC method is 
used to investigate the process. The time-dependent solutions are examined.  

1 INTRODUCTION  
      In many important cases one should treat plasma transport kinetically. Examples are: the 
electron heat transport in inertial confinement fusion (nonlocal transport); propagation of the 
heat bursts, caused by edge localized mode (ELM), into scrape-off layer (SOL) of tokamak. In 
more general sense the solutions of the Landau - Fokker-Planck (LFP) (LFP) equation1-3, 
which is one of the key ingredient of plasma kinetic equation, have much broader interest 
ranging from plasma physics to stellar dynamics (e.g. see Refs.[4] - [8] and the references 
therein).  
     The spatially homogeneous kinetic equation for Coulomb interaction was first published 
by L.D. Landau in 1936. The collision operator for charged particles under assumption of 
grazing collisions was obtained by Landau as an approximation of the Boltzmann integral 
when the mean energy of Coulomb interaction is small versus the mean kinetic energy, i.e. en. 
The Landau equation is often in literature called the Landau-Fokker-Planck equation after its 
rediscovery in the Fokker-Planck form in the important paper2. Beginning with the related 
publication3, a lot of work is done on numerical methods for the Landau equations based on 
finite difference schemes. We indicate the review4 on the subject which contains many 
references.  

In practice, kinetic solution of plasma transport problems can be done only numerically 
which is very difficult and time consuming. In addition, complex nonlinear kinetic codes 
require careful benchmarking, which is not a trivial problem on its own. However, in many 
cases it worthwhile to analyze simpler models, solution of which, nevertheless, exhibit some 
important features of the problem of interest. We notice that such models also help to 
benchmark complex kinetic codes. For example, the transport of electrons along the magnetic 
field lines from hot upstream region of the SOL to cold diverter region during ELM burst, 
resulting in the enhancement of the tail and anisotropization of electron distribution function 
in diverter, can be mimicked by a proper heating term in a much simpler time-dependent 
kinetic equation9. The time dependent solutions in self-similar variables for isotropic 
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nonlinear kinetic equation are examined analytically and numerically in10.  
In the above cited papers the LFP equation is treated numerically with the deterministic 

finite difference approach. Being rather precise for the detailed description of the function 
distribution this approach yields to the DSMC methods in problems with high dimensionality. 
Besides for solving the Vlasov kinetic equation (for collisionless plasmas) the particle 
methods are usually employed11, which are in particular matched with DSMC methods. 

This paper presents numerical results of the DSMC treatment of the space uniform 
nonlinear electron kinetic equation with heating terms which is a diffusion operator with a 
variable quasilinear diffusion coefficient. The qiasilinear diffusion operator is a usual well-
known way to describe a wave-particle interaction and the wave power absorption mechanism 
due to Landau damping. The main goal of this work is to suggest an algorithm for joint action 
of LFP and diffusion operators and to show the possibilities of a new DSMC method12,13. 
     First we give the statement of the problem, shortly describe the idea of the DSMC method 
for the LFP equation and its algorithm. Then an algorithm for the diffusion operator is 
suggested. The interplay between the effects of Coulomb collisions and the diffusion operator 
is studied. Comparison with the self-similar solutions10 obtained in the course of quasilinear 
heating is provided.  

2 PRELIMINARES 
We consider an arbitrary spatially homogeneous mixture of rareed gases. Let 

, , 1,  ...,  if v t i n be distribution functions of particles with masses 

,   1,  ...,  ,  im i n respectively. The independent variables 3v R and t  0 stand for 

velocity and time, respectively. Spatial densities { t , i 1,  ...,  n} i are given by integrals  

3

d f ( ,t ).
R

v v          (1)

The system of Boltzmann kinetic equations for ( , )if v t reads  
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Functions ,  ijg u µ are expressed by formulas 
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, , .ij ji ijg gu u u  (3) 

where ,   ij u µ is the differential cross section (in the center of mass system of colliding 

particles of type i and j ) of scattering at the angle  arccos ,   1. µ µ
The system of Boltzmann equations (BE) (2) is interesting for us merely as a starting 

point to pass to the Landau equations. For such transition one needs to choose a special kind 
of functions ,  ijg u µ (this choice is based on the result obtained in [14]). In the next section 
we give an idea of how to implement the Boltzmann integral for DSMC modeling of 
Coulomb collisions and, consequently, the LFP integral.  

The system of LFP equations for space uniform plasmas with a quasilinear operator reads 

,

( , ) ,  ,  ,   ,  ,  
n

Lk k
kj k j

j e i

f fQ f f D t k j e i
t

v
v v

(4) 

where ( , ) L
kj k jQ f f - Landau collisional integrals 

3

2 2

2
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( , )  2 ( ) ( )
n

k jL k
kj k j k j

j e i k jv

e e

m

mQ f f L dw R u f v f w
v m w

(5) 

with the symmetric kernel 

2

3 ,      ; ,   1,  2,  3. u u uR u u v w
u

(6) 

For solving the kinetic equation for plasmas it is natural to use standard splitting methods, 
i.e. to consider separately (a) continuous motion of electrons and ions in external fields (the 
quasilinear diffusion in our case), and (b) Coulomb collisions. The splitting procedure is 
formally quite similar to what we do in simulation of neutral gases by Monte Carlo methods15 
We shall firstly consider the second stage (b), related to Coulomb collisions, and show. the 
idea of the DSMC method for one sort of particles. 

3 DSMC METHOD FOR THE LANDAU-FOKKER-PLANCK EQUATION 
For the sake of clarity we use one sort of particles. Let us consider the BE (2)  

3 2

ˆ      =  ,  , ', ',  , ,  ,  tf J f f dvdw g u µ f v t f w t f v t f w t
SR

, ,  . g u µ u u µ Assume that the scattering angle  satisfies the condition (grazing
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collisions) 0  ,  0 <  <<1. In other words 2g u,   0 if  1  1  cµ µ .  

Then we formally obtain the Landau equation  
 

 2

3

1ˆ [ , ] ( ) ( ) ( )
8 tr ij i j

i i j

f I f f dw g u u u u f v f w
t v v wR

 (7) 

 
with 
 

1 1     | |    ,   1    ,   1   . 
2 2tr tr

g u dµ d g u µ u dµd u µ µ u u  

 
Hence, the Landau equation can be solved by using the Boltzmann equation with ap-

propriate ,  . g u µ  

Key idea is to choose ,  g u µ in such a way that the Monte-Carlo solution of the 
Boltzmann equation can be constructed in the simplest way. We choose  
 

1( , ; ) = 1
2

g u u  

 
where  is a small parameter,  
 

1 , 2,
1

1, otherwise.
u u

u  

 
The function ( , ; )g u  means that the scattering always occurs at fixed angle 
~ arccos 1 u  for collision of particles and that 1 means ’no scattering’. This 

scattering law is convenient for the application of the Monte Carlo method. Another 
advantage of this approximation is that the total collision frequency is constant: 
 

 
1 1( , ) = 2 ( , ; ) =
1

tot
ijj

g u d g ui .   

 
Such an approximation can be called quasi-Maxwellian, since the total collision frequency 
(for any pair of sorts i and j, including the case =i j ) is independent of velocities. Note that 

 has dimensionality 3[ ][ ]t l , we ignore this fact considering  simply as a small parameter 
(note that  = ±1 means ’no scattering’). Let 
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1
     ,  , ,   . 

2
u

J f f dwd f v t f w t

Then BE reads 

 1 1, ,tf J f f f  (8) 

 
provided 

3

( , ) 1.dv f v t
R

 

 
In the limit 0  we obtain (8), where 
 

1

1

1( ) [1 ](1 ) 2trg u d u u if u
 

 
(otherwise ( )  0 trg u - this does not matter in the limit 0 ). Hence, by solving BE with 
’very small’   0  we actually solve the following Landau equation 
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Thereby the Monte Carlo scheme is made up of the following steps. We have BE (9) 

 

       ,   . f f J f f
t

 

 
The quasi Maxwellian approximation 
 

1 ( ) ( )f f t f t
t

 

 
leads to the following equality 
 

(   )  
        (  )   ,  . 

f t f t
f t f t J f f  

 Hence, the distribution function on the subsequent time step can be defined explicitly from 

the gain term of the collisional operator ( ) ,   f t J f f : 
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3 2

1( ) ,      1 ( ', ) ( ', ) ,
2

uf t J f f dw d u f v t f w t
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where     ,     / 2,    / 2,   (   ) / 2u v w v U u w U u U v w . Thus we have 
an explicit scheme. Our method is the usual simulation of this relation with unit vector 

given in the special coordinate system by two angles such that 
 

2cos   1 - and
( ,  ) 

is uniformly distributed on [0, 2 ].
u

 

 Let be a small positive number, and 
1 - 2 , 0 1 and

  ( ),  ( ) 
1, otherwise.tru u  

 
The cross section of charged particles is given by the Rutherford formula 

4 4( ,  )   ·  sin  .
2

u const u  

 
With angular cut-off at small angle min, we can approximate the momentum transfer cross 
section by 
 

min

4 4cos / 2( ) .
sin / 2tr u const u d const u  

 
Therefore, we have 3    u in this case. 
     As a result the simulation algorithm can be summarized like that. 
• For N particles a set of N velocity vectors   1 20   0  0  ...  0NV v v v   is 
generated. 
• Repeat the following steps: 
- Advance time     ,   2 / .t t t t N  
- Choose any pair  ,    1, ...,  i j j N randomly. 
- Compute the center of mass velocity =(   ) / 2 i jU v v and relative velocity   i ju = v v . 

- Find   = arccos ( ) and pick  uniformly distributed in [0, 2 ]. Then 2 ( ,  )  S    is 
the new relative velocity ' uu  
- Compute the new velocities     / 2iv U u  and   / 2jv U u  and obtain N  new 
velocity vectors   1 ( ) ( ) , ..., ( )NV v v . 
 It is clear that the algorithm satisfies all physical conservation laws. Note that any another 
model cross section can be chosen for the approximation of the LFP equation. 
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  4   STOCHASTIC MODELING OF THE QUASILINEAR DIFFUSION 

Below we consider an interaction of RF waves with a plasma that is described by a LFP 
equation with an added quasilinear term 

 
2 2 2( , )( , ) ( , ), .L

ee x y z
f f tD v t Q f f v v v v
t

v
v v

                               (10) 

 
At the beginning we consider the first stage (a) - the action of the quasilinear diffusion 
operator and describe the algorithm of its stochastic modeling for only one direction 
 

 
                                (11) 

 
(for the directions ,   x y and for the quasilinear coefficient  ( ) D v the algorithm will  be  the 
same). 
     In order to apply the Monte Carlo method to the diffusion process we use in some way the 
intuitive approach based on the integro-interpolation method for the discretization of the 
diffusion equation. In this case the starting problem is the original analytical statement - the 
Laplace differential equation. Then the simplest random process can be defined following the 
assumption of discreteness of the diffusion unit event - the Brownian motion (the Fokker-
Planck equation). Diffusion equation (11) can be solved in the following way. 

Let us choose the small parameter  corresponding to the time step and a large 
number of particles (velocities) that are distributed randomly as consistent with the initial 

condition, 0 0 0|   ( ), ( ) 1tf f v f v dv  (one can say about one particle but many 

iterations). 
Let particles have coordinates   1 2 0   0   0   ...  0NV v v v . 

Repeat the following steps: 
The random number   [0,  1]  is picked out for each of particles. 
After this the particle is shifted to the right by 

'2  +   ,zv D D  
 if   1 / 2,  or to the left by 

' 2  - ,zv D D  
if   1 / 2,  or vice-versa. 

New locations of particles are denoted as (the numeration order does not important)  
1 2 ( )  ( ),  ( ),  ...,  ( ).NV v v v   

We remind that ( , )  0zD v t .  The process is repeated to obtain the subsequent values of 
 ( ),  V and so on. 

Then the limit   0 solves the diffusion equation (11). 

2 ( , )( , )z
z z

f f v tD v t
t v v
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Really, let ( ,  ) f v t is a probability of particle to be located at the point v at the time 
moment t. Our scheme corresponds to the equation 
 

' '1( ,  ) ( 2 , ) ( 2 , ) .
2 z zf v t f v D D t f v D D t  

 
If ( ,  ) f v t is a  ”good” function then at   0 we have 
 

2 2 21( ,  )  ( ,  )  ( ) =  [2 ( ,  )  ( 2 ) ( ,  ) 2    ( )].
2t zz z zf v t f v t O f v t D f v t D f O  

 
From this we obtain ' '( ,  )  ( ,  )  ·  ( ),t zz z zf v t Df v t D f O  what means an approximation 

of  the ( )O t  order.  More rigorously, ( ,  ) f v t should have bounded time derivatives up to 
the second order and directional derivative v up to the third order (but for physics it does not 
matter).  Obviously, the same procedure is valid for the qusilinear diffusion coefficient acting 
in all directions. 

5 EFFECT OF THE LFP OPERATOR AND THE DIFFUSION OPERATOR 
COMBINED ACTION 

     Here we consider the case when coefficient of quasilinear diffusion ( ,  ) D v t increases with 
velocity increasing. In [10] a special class of functions, for which it is possible to construct a 
self-similar solution is considered. We tested our simulation with these solutions. 
     To solve (10) dimensionless variables are used in the following units: electron thermal 
velocity  / 2 /th e ev T m , electron-electron collision time     4e et f  and distribution 

function 3/ 4 thv Here 4 2  2  / ee L m , where L  is the Coulomb logarithm. Also an 
energetic variable 2 2 2  / 2   / thmv T v v   is used. The particle density , that is constant 
in time, and temperature T (average energy) are defined through integrals 
 

2 4

0 0

1 ( , ) 1, ( , ),
3

dv v f v t T dv v f v t  

 
in spherical coordinates. Equilibrium Maxwellian distribution takes a form 
 

2
3

2

4( , ) ( ) exp ,
( )M th

th

vf v t v t
v t

 

which in case of heating depends on time. 
The only case, when the equation (10) formally admits stationary solutions, /  0f t , 

corresponds to  ( ,  )  ( ) · ( )  ( ) / ( )D t D D t D T t . Taking 0( )    ,p pD D  where 
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0D  is the normalization constant and 1    0 p is an adjustable parameter, we find the 
distribution function10 

1

(   ) exp , 1 0.
1

p

f const p
p

                                (12) 

For   0 p we have the Maxwellian distribution which is also the solution to the LFP 
operator. For p = 1/2 we obtain the enhanced tail (   )  { }f exp . Consequently, 
to verify our computational method two variants are considered (in Cartesian coordinates): 

( )  ,    0,  1. pD v v p For p = 0 the solution of the diffusion equation is the Maxwell 
distribution. Then the solution of the Cauchy problem for (10) with p = 0 is the Maxwellian 
with variable temperature. 

We compare our DSMC results with the usage of numerically computed moments 
 

2
2

1

1( ) ,
nN

n
j

j

M t
N

v     (13) 

                                            
 

together with the analytical expressions 
 

                                              
3

22 ( ) ( , ) .nnm t v f v t dv  (14) 

 
Note that   n = 1 corresponds to the second distribution function moment which is the 
averaged energy (temperature). 

In the course of heating, the coefficient of the qiasilinear diffusion is taken in a 
form ( ,  )  1 /D v t T  for p = 0 and ( ,  )  /  D v t v T for   1. p This choice provides 
equal growth of temperature in time for both cases  0,    1 p p and we can compare 
higher moments that describe the behavior of the distribution function tails 

 
4 6 81 1 1, , ,...i i iv v v

N N N
 

 
The initial distribution is taken as 2

0 ( )  ( 1) / . f v v v For DSMC method it means that 
the initial velocities are uniformly distributed on the unit sphere, i.e.  | |   1iv . Note, 
initially all distribution function moments are equal to unit. 

Fig.1 shows comparison of temperature (the second moment M2(t)) for two diffusion 
coefficients: p = 0 and p = 0.5. The same balance in temperature variation in time preserves 
for all considered cases. For the case  0 p we have to obtain the Maxwellian distribution 
function. Distribution moments obtained numerically with those obtained for Maxwellian 
distribution are compared in Fig.2. After some while (t > 2.5) we have good qualitative and 
quantitative agreement. 
 For p = 1 comparison with the Maxwellian moments p = 0 show a substantial 
enhancement of the distribution tails - Fig.3. The lower moments are closer to each other. It 
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means that in the thermal velocity region functions for different p are close to Maxwellian. 
For better presentation moments are normalized on the second moment 10 (energy). 
Distribution functions for different time moments are shown in Figs.4, 5. Fig.6 shows 
comparison of normalized moments 6,10M  and 6,10m . As can be clearly seen the formation of 
the distribution function tails occur later than electron collusion time (t = 1). One can see that 
the high order moments of the distribution are accompanied with stochastic oscillations even 
for a big number of N. Finally, Fig. 7 shows the distribution function for the diffusion 
operator that acts over one direction z. 

6  CONCLUSIONS 
A general approach to Monte Carlo methods for Coulomb collisions is given. The 

approach is based on a special (quasi-Maxwellian) way of approximation of the Landau 
equation by Boltzmann equation. The possibility of using the other operators to treat heating 
is shown. Stochastic modeling of the quasilinear diffusion with the diffusion coefficient 
dependent on velocity is suggested. The effect of the LFP and the diffusion operators 
combined action results in the distribution tail enhancement. Obtained results are consistent 
with the preceding results. The results of the paper can be used (by the splitting scheme in the 
frame of particle methods) for any inhomogeneous problem. 

Author is grateful to Prof. A.V. Bobylev for valuable discussions. This work was partially 
supported by the PFI DMS N 3 Russian Academy of Sciences. 
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Figure 1: Dependence of the second moment on time 2 ( )m t  (temperature) for two cases p=0 
and p=0.5; K is a number of simulation runs. 
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Figure 2:  Dependence of the high distribution function moments on time (Eq. (13)) and comparison with the 
analytical expression Eq.(14)  for  p=0. 

Figure 3:  Comparison of the moments 4,6,8,10 ( )M t  for p=0  -  dotted lines and p=1- solid lines.
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Figure 4:  Distribution function for p=1, t=3. 

Figure 5:  Distribution function for p=1, t=0 and t=5. 
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Figure 6:  Comparison of the numerical moments 6,10M  with the analytical moments 6,10m  for the distribution 

function (12) normalized on the second moments 2 2,M m , consequently, for the degree p=1.

Figure 7:  Distribution function for p=0, t=20 and the diffusion operator acting in z direction. 
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