ON THE INCREMENT OF SOME CLASSES ANALYTICAL FUNCTIONS

V. S. ZAKARYAN AND R. V. DALLAKYAN

Abstract

In this paper estimates of the growth for the functions from the well known classes D_{α}^{p} and A_{α}^{p}, when z tends to the unit circle are obtained. First the known estimate $|f(z)| \leq M(1-|z|)^{-\frac{\alpha+2}{p}}$ for the functions from the class A_{α}^{p} is sharpened for the functions belonging to the particular class $A_{\alpha}^{2}(-1<\alpha<\infty)$, then it is generalized for the whole space A_{α}^{p}.

Finally it is proved that this estimate is not possible to improve, i. e. the exponent $\frac{1}{p}$ is exact.

Lets \mathcal{D} be the unit disk in the complex plane \mathcal{C}, and $\operatorname{Hol}(\mathcal{D})$ be a set of holomorphic functions in \mathcal{D}. We say that the function $f(z)$ from $\operatorname{Hol}(\mathcal{D})$ belongs to the class $A_{\alpha}^{p}, 0<$ $p<+\infty, \alpha>-1$, if

$$
\int_{0-\pi}^{1} \int_{-\pi}^{\pi}(1-r)^{\alpha}\left|f\left(r e^{i \theta}\right)\right|^{p} r d r d \theta<+\infty, z=r e^{i \theta}
$$

The research of the behavior of functions of these classes are of interest of many authors. In M. M. Jrbashyan's work [1] these classes were denoted by $H_{p}(\alpha)$. Some authors call them the classes of Bergman.
In [1] and in several other works (see for instance [2]) it is proved that if $f \in A_{\alpha}^{p}$, $0<p<+\infty,-1<\alpha<+\infty$ then

$$
\begin{equation*}
|f(z)| \leq \frac{M}{(1-|z|)^{\frac{\alpha+2}{p}}}, \quad z \in \mathcal{D} \tag{1}
\end{equation*}
$$

where M is a constant.
If the sequence $\mathbf{a}=\left\{a_{j}\right\}$ has

$$
\sum\left(1-\left|a_{j}\right|\right)^{2}<\infty
$$

A condition which is certainly met by all $A_{\alpha}^{p}, 0<p<+\infty,-1<\alpha<+\infty$ space zero sequences, C. Horowitz [3] introduced a product

$$
H_{\mathbf{a}}(z)=\prod_{j} b\left(z, a_{j}\right)\left(2-b\left(z, a_{j}\right)\right), z \in \mathcal{D},
$$

where

$$
b(z, \beta)=\frac{\bar{\beta}}{|\beta|} \frac{\beta-z}{1-\bar{\beta} z}, z \in \mathcal{D}, \beta \in \mathcal{D}
$$

Key words and phrases. The classes A_{α}^{p}, the classes D_{α}^{p}, the Horowitz products.
denotes a single Blashke factor. The Horowitz product is that it may grow wildly towards the boundary, and, in general, it itself will not belong to the A_{α}^{p} space. It is known [2], that if $f \in A_{\alpha}^{p}$, and \mathbf{a} is the sequence of zeroes of the function f, then $\frac{f(z)}{H_{\mathbf{a}}(z)} \in A_{\alpha}^{p}$.

We say that the function f from $\operatorname{Hol}(\mathcal{D})$ belongs to the class D_{α}^{p}, where $0<p<$ $+\infty,-1<\alpha<+\infty$, if

$$
\int_{0}^{1} \int_{-\pi}^{\pi}(1-r)^{\alpha}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} r d r d \theta<+\infty, z=r e^{i \theta}
$$

The class of functions D_{0}^{2} coincides with the usual class of analytic in \mathcal{D} functions with finite Dirichlet integral. If $\alpha+1 \leq p, D_{\alpha}^{p}$ is called the class of functions with bounded Dirichlet type integral.

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \operatorname{Hol}(\mathcal{D})$. Denote

$$
M(r, f)=\max _{|z|=r}|f(z)| ; \bar{M}(r, f)=\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n}
$$

In [4] V. Gowling proved that if $f(z) \in D_{0}^{2}$, then

$$
\begin{equation*}
\lim _{r \rightarrow 1-}\left(\log \frac{1}{1-r}\right)^{-\frac{1}{2}} \cdot \bar{M}(r, f)=0 \tag{2}
\end{equation*}
$$

In [5] S. Yamashita proved that $-\frac{1}{2}$ in equation (2) is the best possible value, i.e. for any constant $q, 0<q<\frac{1}{2}$ there exists $f \in D_{0}^{2}$ such that

$$
\begin{equation*}
\lim _{r \rightarrow 1-} \inf \left(\log \frac{1}{1-r}\right)^{-q} \cdot \bar{M}(r, f) \geq 1 \tag{3}
\end{equation*}
$$

V. Zakaryan in [6] proved that if $f \in D_{\alpha}^{2}, \alpha>0$ then

$$
\begin{equation*}
\lim _{r \rightarrow 1}(1-r)^{\frac{a}{2}} \cdot \bar{M}(r, f)=0 \tag{4}
\end{equation*}
$$

Moreover, for any constant $q, 0<q<\frac{1}{2}$ there exists a function $f(z) \in D_{\alpha}^{2}$ such that

$$
\begin{equation*}
\lim _{r \rightarrow 1} \inf \left((1-r)^{q \alpha} \cdot M(r, f) \geq 1\right. \tag{5}
\end{equation*}
$$

The results (2)-(5) as well as some similarities of the classes A_{α}^{p} and D_{α}^{p} suggest that the result (1) can be strengthened. In this work we get similar to (4), (5) for the functions from classes A_{α}^{p}.

Theorem 1. Let $-1<\alpha<+\infty, f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in A_{\alpha}^{2}$ and $z=r e^{i \theta \varphi}$, then

$$
\begin{equation*}
\lim _{r \rightarrow 1-}(1-r)^{1+\frac{a}{2}} \cdot \bar{M}(r, f)=0 \tag{6}
\end{equation*}
$$

Proof. As $f(z) \in A_{\alpha}^{2}$, then (see [7])

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left|a_{n}\right|^{2}}{n^{\alpha+1}}<+\infty \tag{7}
\end{equation*}
$$

Let's write $\bar{M}(r, f)$ in the following way:

$$
\bar{M}(r, f)=\sum_{n=0}^{k}\left|a_{n}\right| r^{n}+\sum_{n=k+1}^{\infty}[\gamma(\alpha+1, n)]^{1 / 2}\left|a_{n}\right| \cdot[\gamma(\alpha+1, n)]^{-1 / 2} \cdot r^{n},
$$

where

$$
\begin{equation*}
\gamma(\alpha+1, n)=\frac{\Gamma(\alpha+1) \cdot \Gamma(1+n)}{\Gamma(\alpha+2+n)}=\int_{0}^{1}\left(1-r^{2}\right)^{\alpha} \cdot r^{2 n+1} d r \tag{8}
\end{equation*}
$$

It is known that (see [8], page 885)

$$
\begin{equation*}
\gamma(\alpha+1, n)=O\left(\frac{1}{n^{\alpha+1}}\right) \tag{9}
\end{equation*}
$$

Applying the Cauchy inequality, we get

$$
\bar{M}(r, f) \leq \sum_{n=0}^{k}\left|a_{n}\right| r^{n}+\left(\sum_{n=k+1}^{\infty}\left|a_{n}\right|^{2} \gamma(\alpha+1, n)\right)^{1 / 2} \cdot\left(\sum_{n=k+1}^{\infty} \frac{r^{2 n}}{\gamma(\alpha+1, n)}\right)^{1 / 2}
$$

From the last inequality, using (8) and (9), we receive

$$
\begin{gathered}
\bar{M}(r, f) \leq \sum_{n=0}^{k}\left|a_{n}\right| r^{n}+C_{1}\left(\sum_{n=k+1}^{\infty} \frac{\left|a_{n}\right|^{2}}{n^{\alpha+1}}\right)^{\frac{1}{2}} \cdot\left(\sum_{n=0}^{\infty} \frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+1) \Gamma(1+n)} r^{n}\right)^{\frac{1}{2}}= \\
=\sum_{n=0}^{k}\left|a_{n}\right| r^{n}+C_{1}\left(\sum_{n=k+1}^{\infty} \frac{\left|a_{n}\right|^{2}}{n^{\alpha+1}}\right)^{\frac{1}{2}}(1-r)^{-\left(1+\frac{\alpha}{2}\right)}
\end{gathered}
$$

where C_{1}, is a constant. Hence, we have

$$
(1-r)^{1+\frac{\alpha}{2}} \bar{M}(r, f) \leq(1-r)^{1+\frac{\alpha}{2}} \sum_{n=0}^{k}\left|a_{n}\right| r^{n}+C_{1}\left(\sum_{n=k+1}^{\infty} \frac{\left|a_{n}\right|^{2}}{n^{\alpha+1}}\right)^{\frac{1}{2}}
$$

Using this inequality, it is easily seen that

$$
\lim _{r \rightarrow 1-} \sup (1-r)^{1+\frac{\alpha}{2}} \cdot \bar{M}(r, f) \leq C_{2}\left(\sum_{n=k+1}^{\infty} \frac{\left|a_{n}\right|^{2}}{n^{\alpha+1}}\right)^{\frac{1}{2}}
$$

Now applying (7) and noting that the left hand side of the inequality doesn't depend on k we get (6).
From this theorem the following statement holds true:
Theorem 2. Let $0<p<\infty,-1<\alpha<+\infty, f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in A_{\alpha}^{p}$, and $\mathbf{a}=\left\{a_{j}\right\}$ is the sequence of zeroes of the function f. Then the following equality takes place

$$
\begin{equation*}
\lim _{\substack{z \rightarrow e^{i \varphi} \\ z \in \mathcal{D}}} \frac{(1-|z|)^{\frac{2+\alpha}{p}}}{\left|H_{\mathbf{a}}(z)\right|}|f(z)|=0 \tag{10}
\end{equation*}
$$

where $\varphi \in[0,2 \pi], H_{\mathbf{a}}(z)$ - Horowits products.
Proof. When $p=2$ noting that $\bar{M}\left(r, \frac{f}{H_{\mathbf{a}}}\right) \geq\left|\frac{f(z)}{H_{\mathbf{a}}(z)}\right|$ for any $z \in \mathcal{D}$, from theorem 1 we have

$$
\begin{equation*}
\lim _{\substack{z \rightarrow e^{i \varphi} \\ z \in \mathcal{D}}} \frac{(1-|z|)^{1+\frac{\alpha}{2}}}{\left|H_{\mathbf{a}}(z)\right|}|f(z)|=0 \tag{11}
\end{equation*}
$$

Now note that if $f(z) \in A_{\alpha}^{p}$ then $\left(\frac{f(z)}{H_{\mathbf{a}}(z)}\right)^{\frac{p}{2}} \in A_{\alpha}^{2}$. It means that for the function $f(z) \in A_{\alpha}^{p}$ then $\left(\frac{f(z)}{H_{\mathbf{a}}(z)}\right)^{\frac{p}{2}}$ statement (11) holds true, i.e.

$$
\lim _{\substack{z \rightarrow e^{i \varphi} \\ z \in \mathcal{D}}}(1-|z|)^{\frac{2+\alpha}{2}}\left|\frac{f(z)}{H_{\mathbf{a}}(z)}\right|^{\frac{p}{2}}=0 .
$$

This completes the proof of the theorem.
Theorem 3. Let $0<p<+\infty,-1<\alpha<+\infty$. For any constant $q, 0<q<\frac{1}{p}$ there exists a function $g(z) \in A_{\alpha}^{p}$ such that

$$
\begin{equation*}
\lim _{z \rightarrow 1-} \inf (1-|z|)^{q(2+\alpha)} M(|z|, g) \geq 1 \tag{12}
\end{equation*}
$$

Proof. Let $z=r e^{i \theta}$ and

$$
g(z)=(1-z)^{-q(2+\alpha)},|z|<1 .
$$

We show that $g(z) \in A_{\alpha}^{p}$. For this purpose we evaluate above the following integral:

$$
\begin{aligned}
& \int_{0}^{12 \pi} \int_{0}^{2 \pi}(1-r)^{\alpha}\left|g\left(r e^{i \theta}\right)\right|^{p} r d r d \theta=\int_{0}^{12 \pi} \int_{0}^{1}(1-r)^{\alpha} \cdot \frac{r d r d \theta}{\left|1-r e^{i \theta}\right|^{q p(2+\alpha)}} \leq \\
& \leq \int_{0}^{1}(1-r)^{\alpha}\left(\int_{0}^{2 \pi} \frac{d \theta}{\left[(1-r)^{2}+4 r \sin ^{2} \frac{\theta}{2}\right]^{\frac{q p(2+\alpha)}{2}}}\right) d r .
\end{aligned}
$$

Hence, since for $0<\theta \leq \pi$

$$
\left|1-r e^{i \theta}\right|=\left[(1-r)^{2}+4 r \sin ^{2} \frac{\theta}{2}\right]^{\frac{1}{2}} \geq C_{1}(1-r+\theta)
$$

where C_{1} is a constant, we get

$$
\begin{gathered}
\int_{0}^{12 \pi} \int_{0}^{12 \pi}(1-r)^{\alpha} \cdot\left|g\left(r e^{i \theta}\right)\right|^{p} r d r d \theta \leq C_{2} \int_{0}^{1}(1-r)^{\alpha} \int_{0}^{\pi} \frac{d \theta}{(1-r+\theta)^{q p(2+\alpha)}} \leq \\
\leq C_{3}-C_{2} \int_{0}^{1} \frac{d r}{(1-r)^{q p(2+\alpha)-1-\alpha}},
\end{gathered}
$$

where C_{2}, C_{3} are constants. As $q<\frac{1}{p}$, it follows that $g(z) \in A_{\alpha}^{p}$. The inequality (12) now holds, as

$$
M(r, g) \geq g(r)=(1-r)^{-q(2+\alpha)}, 0<r<1
$$

REFERENCES

1. Djrbashyan M. M. On the problem of representation of analytic functions. Proc. of Inst Math, and Mech. Armenian Academy of Sciences, 1948 (2) 3-55.
2. Hedenmalm H., Korenblum B. and Zhu K., Theory of Bergman Space, Graduate Texts in Mathematics, Vol. 199, Springer, New York, Berlin, etc., 2000.
3. C. Horowitz. Zeros of functions in the Bergman spaces. Duke Math. J 41 (1974), 693-710.
4. Gowling V., Amer. Math. Monthly, v. 66, 119-120 (1959).
5. Yamashita S., Amer. Math. Monthly, v 87 N87 (1980)
6. Zakaryan V. S. A remark on functions with a finite Dirichlet integral, Dokladi NAS Armenia, LXXIX, 54-57 (1984).
7. Buchley S. M., Koskela P., Vukotic D, Functional integration, differentiation and weighted Bergman spaces, Math. Proc. Camb., Phil., Soc., (1999), 126, 369-385.
8. Bari N. K., Trigonometric series, Moscow 1961.

Received November 11, 2012
State Engineering University of Armenia, Yerevan, Teryan 105, 12 building
E-mail address: mathdep@seua.am
E-mail address: dallakyan57@mail.ru

