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Summary. Computational experiments targeting such regimes require determination of 
optical, thermo-physical and other characteristics of irradiated targets in wide temperature and 
frequency ranges. The present paper suggests an approach to determine the optical 
characteristics of metals at arbitrary temperature and frequency by an example of calculation 
of reflectivity and volume absorptance of silver surface. 
 
1 INTRODUCTION 

Systematic investigation of all phenomena in the area of influence of concentrated 
radiation fluxes (CRF) on condensed media is of scientific interest. This allows us to know 
details of the mechanism of interaction of radiation with matter, the subtleties of the structure 
of various substances. Such knowledge is also of great practical importance in the formulation 
of the basic requirements for sources of CRF, and determining the optimum conditions of 
exposure. For example, laser treatment of opaque materials requires such optical 
characteristics as surface reflectivity R[%] or absorptance A=1-R  and also volume 
absorptance α [sm-1].  

The energy flow during irradiation of strongly absorbing condensed medium by a CRF is 
partially reflected from the surface and partially absorbed within a thin near-surface layer. 
The energy absorption has surface or volume nature depending on the irradiation regime 
(duration of influence, radiation wave length) and optical and thermo-physical properties of 
the processed materials. The deposited energy is then expended for heating, melting and 
evaporation of the target. 

For a wide class of materials including metals, there is an extensive information on 
frequency dependence of optical characteristics measured at a fixed (usually room) 
temperature.1-3 Temperature dependences for the majority of materials even in the low 
temperature region are determined insufficiently precisely. So the temperature dependence of 
absorptance A(T) is known to be linear for the majority of metals at temperatures below 
melting temperature, ( ) TbaTA ⋅+= , where b,a  - certain coefficients. The reflectivity and 
absorptance are usually assumed to be temperature independent in the region close to or 
exceeding the melting point, so its average or average-integral values within the considered 
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temperature range are used in estimations.4  
Such approach is not much suitable for mathematical modeling of treatment of metals by 

ultrashort and high-power laser pulses when the energy of radiation is transferred directly to 
electrons and strongly non-equilibrium region with hot electrons and cold lattice is formed in 
solid. In addition, short period of time ( )1512 1010~t −− ÷ s is required for heating of the 
electronic subsystem to temperatures eT  comparable to or exceeding the Fermi energy FΕ . 
Electrons have Fermi distribution with temperature in the case of FeT Ε< . Degeneration is 
removed at FeT Ε≅  and electrons obtain Maxwell distribution for FeT Ε> . Transition 
through Fe ~T Ε  temperature is connected with change of electron-electron and electron-
phonon interactions mechanisms that lead to qualitative changes in optical and thermo-
physical characteristics of solid.5 

Here, we present an attempt of calculation of the temperature and frequency dependences 
of optical characteristics of metals in a wide range of frequencies ( )eV101.0 ÷=ωh  and 
temperatures ( )eV50024.0Te ÷= . To achieve this, we use the longitudinal 
permittivity ( )T,ωεε ll =  obtained from the solution of kinetic equation. 

 

2 THE THEORETICAL ANALYSIS 

2.1 Reflectivity and volume absorptance 
It is possible to express all linear (macroscopic) optical characteristics of plasma including 

real coefficients of absorptanceα , of reflection R and complex refraction index κinN +=  in 
terms of its permittivity.6 By definition, the complex refraction index N is equal to: 

lεκ =+= inN ,     (1) 

where n and κ - are the optical constants representing the real and imaginary parts of 
refraction index, lε  is the longitudinal permittivity. Since permittivity is also a complex 
quantity 

lll
21 iεεε +=  one can  equate their real and imaginary parts and obtain the following 

system of equations: 
22

1 n κε −=l , κε n22 =l .     (2) 

The solution of the system (2) gives the expressions for n and κ: 

( ) ( )[ ] 2/12/12
2

2
11

2/12n
⎭
⎬
⎫

⎩
⎨
⎧ ++= − lll εεε    (3) 

( ) ( )[ ] 2/12/12
2

2
11

2/12
⎭
⎬
⎫

⎩
⎨
⎧ ++−= − lll εεεκ    (4) 

The reflectivity R and absorptance A of irradiated surface of infinitely thick plasma layer 
at normal falling are expressed according to classical Fresnel formula as 7 
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( )
( ) 22

22

1n
1nR

κ
κ

++
+−

= ,  ( ) 21n
n4R1A
κ++

=−= .  (5) 

The volume absorptance coefficient α  is thus equal  

λ
κπωκα ⋅⋅

=
⋅⋅

=
4

c
2 ,     (6) 

where ω  is the frequency of irradiation, λ  is the wave length, c  is the velocity of light.6  
The values of R, A and α for low temperatures are usually determined from experimental 

data and then are used to obtain optical constants n and κ.6-8  
Generally speaking, the values of lεκ ,,n  for electronic plasma of metals are functions of 

radiation frequency ω  and temperature T: 

( ) ( ) ( )T,,T,,T,nn ωεεωκκω ll ===  

Thus, all macroscopic optical properties of metals and their frequency and temperature 
dependences can be expressed solely in terms of longitudinal permittivity ( )T,ωεε ll = . 

2.2 Permittivity of degenerated electronic plasma of metal ( )k,
r

ωε  

It is known from the theory of electromagnetic field that the permittivity of free electron 
gas ( )k,

r
ωε  depends on frequency ω  (so-called time or frequency dispersion) and wave 

vector k
r

 (the spatial dispersion). In the presence of space dispersion, i.e. depending on the 
vector k

r
, the permittivity is a tensor value ( )k,ij

r
ωε  even in isotropic medium. The tensor 

( )k,ij

r
ωε  is characterized by two scalar functions - lε  and tε ,  so-called longitudinal  and 

transversal permittivity accordingly which depend on independent variables – frequency ω  
and wave vector modulus k , ( ) ( )k,,k, tt ωεεωεε == ll . Preferential direction 

disappears at 0k →
r

 and the tensor ( )k,ij

r
ωε  is reduced to ( ) ijδωε , where ( )ωε  is the usual 

scalar permittivity which takes into account only frequency dispersion. The limiting values of 
functions lε  and trε  also become equal to ( ) ( ) ( )ωεωεεωεε ==== 00 ,, ttll .  

Generally speaking, the tensor ( )k,ij

r
ωε  is a complex function of real variables ω and k

r
. 

Scalar functions lε  and tε  are also complex functions of frequency ω and wave vector 
modulus k .  

( ) ( ) ( ) ( ) ( ) ( )k,ik,k,,k,ik,k, ttt ωεωεωεωεωεωε 2121 +=+= lll    (7) 

The presence of time and spatial dispersion in the longitudinal permittivity ( )k,ωε l  
allows determining its frequency and temperature dependencies and corresponding 
dependencies of refractivity and absorptance. 

To determine the longitudinal permittivity in arbitrary temperature range, it was supposed 
that the transition from strong degeneration 1/T Fe <<= Εξ  to Boltzmann’s case 
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1/T Fe >>= Εξ  occurs smoothly. The temperature dependence of the chemical potential was 
used for smoother transition6 

( ) ( )ξΕξπξπΕμ D
!4!3!3

1T F
4

4
2

2

Fe =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≅    (8) 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
+−= 4

4
2

2

!4!3!3
1D ξπξπξ  

At low temperatures when ( )eTμ  is close to FΕ  (exact equality ( )eTμ = FΕ  is reached at 
absolute zero), collective electrons in metal obey the Fermi-Dirac statistics 
( ) ( )( ) 11xexpEf −+−= η , where ( ) ΕμηΕ ,T/T,T/x eee ==  is the energy of electron. The 

distribution function ( )Εf  is practically close to Boltzmann’s one ( ) ( )xexpf −= ηΕ for high 
values of energy E when 1x >>−η . 

The overall longitudinal permittivity is suggested to be defined in the form of the sum of 
two components providing smooth transition from degenerated electron gas to Maxwell’s 
plasma 

( ) ( ) ( ) ( )( ) ( )T,DT,DT, MF ωεξωεξωεε llll −+== 1 . (9) 

2.3 Kinetic equation 

The calculation of permittivity ( )k,
r

ωε  in the general case of arbitrary values of vector 
k
r

(with essential effect of spatial dispersion) requires application of kinetic equation which 
for collisionless plasma has the form: 

( ) ( ) ( )
p
f

Ee
r
f

t
f 0

r
r

r
r

∂
∂

=
∂

∂
+

∂
∂ δδυδ ,    (10) 

where ( ) ( )pffpf 0 δ+=
r  is the electron distribution function in the momentum space, 0f  is 

the stationary isotropic and space-homogeneous distribution function unperturbed by the 
field, fδ  is the variation of  the distribution function under the influence of the field.9 

The longitudinal part of permittivity ( )k,ωε l for the collisionless plasma is determined 
from the solution of the kinetic equation (10) and has the form 9  

( ) ( )
∫
∞

∞− −−∂
∂

−=
0ik

pd
p
pfk

k
e41k,

3

2

2

ωυ
πωε rrr

rr
l .  (11) 

The derived expression has a critical point (pole) in the bottom complex half plane. The 

singularity 
ωυ −

rrk
1  is usually considered as 

( )0ik
1
+− ωυ

rr , i.e. the value ω  is represented in 

the form of 0i+ω  with infinitesimal positive imaginary part.9-11 After a change of the 
integration variable the integral (11) is written in the form  
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( ) 0,zd
iz
zf

>
−∫

∞

∞−

δ
δ

 

The path of integration in the complex plane runs under the point δiz =  that at 0→δ  is 
equivalent to integration along the real axis with inclusion of the pole 0z =  over an 
infinitesimal semicircle. Contribution to integral from this contour is defined by the half 
residue of integrand 

( ) ( ) ( ).0fizd
z
zfzd

iz
zf π
δ

+=
− ∫∫

∞

∞−

∞

∞−

   (12) 

The integral in the right part of equation (12) is the limiting value of an integral of Cauchy 
type. 

The analogue of the classical kinetic equation is used for description of electromagnetic 
properties of the quantum plasma to which electronic plasma of metals refers to.10,11 The 
equation for the quantum distribution function ( )pf r  dependent on the kinematic 
momentum pr , for a small deviation from the equilibrium homogeneous condition 
( )t,r,pf rr = ( ) ( )t,r,pfpf0

rrr δ+ , has form: 

( ) ( ) ( )
( )

( ) ( )∫
⎩
⎨
⎧
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +−

∂
∂′×=

∂
∂

+
∂

∂
+

∂
∂ −′

2
r

r
pfei

2
e

p
f

Ee
r
fv

t
f

0
ppi

3
0 τϕτϕ

π
δδδ τ

r
hrr

hr
r

h
r

r
r

r r

 

pdd
2

rA
2

rA
r
A

c
v

2
r ′

⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂′

−⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ −+

rr
r

hrrr
hrr

r

r
r

h

rr
hr τττττϕ  (13) 

where  0f  is the stationary isotropic and space-homogeneous momentum distribution function 
of electrons unperturbed by the field, fδ is its variation under the influence of the field, 

A,,E
rr

ϕ   are electric field strength vector, scalar and vector potentials, 1p −=
rrτ .10, 11 

The equation (13) changes into the kinetic equation (10) at the classical limit 0→h . The 
function ( )pf r  for degenerated electron gas takes the form of Fermi distribution: 

( ) ( )
( )3F 2

pn2pf
h

r
r

π
= , 

where 
( )3

3

2
pd2
hπ

 is the number of conditions within the momentum space element pd 3  with 

two values of  spin projection, ( )pn r  is the number of filled quantum electron states with 
specified values of momentum and spin projections. ( ) 1pn =

r  in the case of complete 
degeneration (Т = 0) and distribution function takes the form: 
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( ) ( )
( )

⎪
⎩

⎪
⎨

⎧

>

=<
=
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3/1
e

3/12
F3

F

pp0
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2

2
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h
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r π
π    (14) 

The expression for longitudinal permittivity ( )k,
r

l ωε  of completely degenerate electron gas 
with distribution function (14) is obtained in [12] from the solution of the kinetic equation 
(13): 

( )
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3
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A more general expression for permittivity of degenerate plasma is obtained at 0T ≠ . 
Elementary but rather tedious integration of equation (15) leads to the following result:13  
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h

h

h
l ,     (16) 

where Teϑ , Tep  are the average values of thermal velocity and electron momentum, k is the 

average value of the modulus of the wave vector k
r

. 
The integral in the equation (16) is a limiting value of integral of Cauchy type due to the 

presence of 
( )0ik
1
+− ωυ

rr  singularity.  The integration path runs in the plane of the complex 

variable ( )0i+ω   along the real axis with inclusion of the point k/mp ω= .  

2.4 Imaginary part of the longitudinal permittivity ( )k,2

r
l ωε  

The imaginary part ( )k,2 ωε l  of the longitudinal permittivity ( )k,
r

l ωε  is defined in (16) 
by a half residue in the point k/mp ω= . We separate it using the expression (12) and 
obtain: 

( ) ( )

( )

( )
⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

=
2

TeTe

2

TeTe

2/1T
3

e
22

2

p2
k

p
pexp1

p2
k

p
pexp1

ln
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h
l
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ξ
π

ωε   (17) 

The imaginary part of permittivity ( )k,F,2 ωε l  in the case of degenerate electron Fermi gas 
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with account of expressions k/mp ω= , h/pk FF = , ( ) 2/1
FFF m2mp ευ == , 

( ) 2/1
FF m/2ευ =  is written as: 
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is the plasma or Langmuir frequency 

and Debye radius for electrons accordingly, ( )∫
∞ +

+ +−
=

0

2/1k

2/1k dx
1xexp
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η

 is the Fermi's 

integral. The values of 2/1F  and ( )ξη  are approximated by expressions: 5 
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The imaginary part of permittivity for Maxwell plasma with account of 
h/pk TeTe = ( ) 2/1

e
1 mT2−= h , == TeTe mp υ  ( ) 2/1

emT2= ,  ( ) 2/1
eTe m/T2=ϑ  can be written as: 
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The expressions (18)-(19) in two limiting cases of low 0Te →  and high FeT ε>>  change 
into two well-known relationships. The expression (18) changes at 0Te →  into the formula 
obtained in [13] for imaginary part of permittivity ( )k,2 ωε l  of degenerate electron Fermi - 
gas:  

( )
( )3F

2
Le

F,2 k2
3k,

υ
ωωπωε =l   at  Fkϑω < . 

In other limiting case of sufficient for degeneration removal high temperatures 1>>ξ and 
0h → , relationship (19) matches a known expression ( )k,M,2 ωε l  for classical electron 

plasma:9 
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Thus, the imaginary part of permittivity of degenerated electron gas ( )k,F,2 ωε l  and 
Maxwell plasma ( )k,M,2 ωε l  can be written in the form of frequency and temperature 
dependencies 
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The expression for the total imaginary part of permittivity l
2ε , according to (9) is presented 

in the form explicitly dependent on the radiation frequency ω and electron temperature eT : 
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where the value ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= 4

4
2

2

!4!3!3
1D ξπξπξ , ( )ωhCC =  weakly varies with frequency, 

π21C ÷=  within the frequency range 1001.0 ÷=ωh  eV. 

2.5 The real part of longitudinal permittivity )k,(
r

l ωε1  

Analytical determination of real part of permittivity )k,(11

r
ll ωεε =  by means of the 

equation (16) is possible only for two limiting cases: for high 1k/ Te >>υω  and low 
1k/ Te <<υω  frequencies.12 
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High-frequency approximation ( )k,h, ωε l
1 . At high frequencies 1k/ Te >>υω  the integrand 

(16) can be expanded in a Taylor series witch integration gives the approximation for the real 
part of permittivity ( )k,h,

1 ωε l : 
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We preserve the first three terms of expansion in (21) and obtain: 
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Taking into account values of Fermi integrals 2/1kF +  and average electron energy 
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e F

FT=>< Ε  approximation for h,
F,1
lε  is written as 
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For Maxwell plasma 1>ξ  
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Low-frequency approximation s,l
1ε . A change of variables Tk/xy υω+=  is preformed in 

integral (16) for low frequencies 1k/ T <<υω . After expansion in series and integration 
within x we obtain: 
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where ( ) ( )xf j  is the j-th derivative of Fermi distribution function. Preserving only first two 
components 1,0j =  in series (24) we write: 
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At 1<ξ  for Fermi distribution we obtain: 
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low-frequency approximation for Fermi components take the form: 
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Corresponding value for Maxwell component 1>ξ  is written as: 
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Taking into account the expressions (22), (25), the real part of permittivity of degenerated 
electron gas l

F,1ε  we can be presented (25) in the form of lacing of high-frequency ( )e
h,
F,1 T,ωε l  

and low-frequency ( )e
s,
F,1 T,ωε l  approximations. The high-frequency ( )e

h,
F,1 T,ωε l  approximation 

satisfies the condition 1k/ Te >>υω  and is used in low-temperature region. Low-frequency 
approximation ( )e

s,
F,1 T,ωε l  satisfies the condition 1k/ Te <<υω  and is applied to high 

temperatures. The lacing is carried out in the point of intersection of the curves ( )e
h,
F,1 T,ωε l  

and ( )e
s,
F,1 T,ωε l  where the permittivity transits from ( )e

h,
F,1 T,ωε l  curve to ( )e

s,
F,1 T,ωε l  curve.  

The same method of lacing of high-frequency ( )e
h,
M,1 T,ωε l  and low-frequency 

( )e
s,

M,1 T,ωε l  approximations is used to determine the real part of permittivity for Maxwell 
plasma ( )eM,1 T,ωε l .  Using the obtained expressions for l

F,1ε  and ( )eM,1 T,ωε l  real part of 
permittivity ( )k,h,

1 ωε l  is finally presented as: 

( ) ( ) ( ) ( )( ) ( )T,D1T,DT, M,1F,11 ωεξωεξωε lll −+= .    (27) 

3 CALCULATION OF REFLECTIVITY ( )eT,R ω  AND VOLUME ABSORPTANCE 
( )eT,ωα  OF SILVER 

The results of above theoretical analysis can be used to determine the frequency and 
temperature dependences of a volume absorptance ( )eT,ωα  and surface reflectivity ( )eT,R ω  
of metal targets. Present paper treats silver as irradiated target material. Silver is a one-valent 
metal and is characterized by following parameters: 
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22
e 105.862

MA
zN ×==

ρ  3cm− ,  ( ) eV219.5N3
m2

3/2  
e

2
2

F == πΕ h ,  

( ) eV990.8Ne4 2/1
e

2
Le == πωh ,  

where z – valency, A - atomic weight, M – mass.15 
As it was already noted, there is extensive information on frequency dependence of 

optical characteristics of metals, measured as a rule at a room temperature.2, 3, 16 So to 
compare the calculated and reference data we started with calculation of frequency 
dependences of imaginary ( )ωε l

2  and real ( )ωε l
1  parts of permittivity using relationships (20) 

and (27) at a fixed temperature (293 K), Fig.1. The results of calculations shown at Fig.1 
indicate that properties of the frequency dependences ( )ωε l

1  and ( )ωε l
2  correspond to the 

generally accepted view on the behavior of permittivity of electron plasma. In particular, the 
real and imaginary parts change with frequency asymptotically tending to 1 and 0 
correspondingly, moreover, the real part ( )ωε l

1  changes its sign during transition over the 
point Leωω hh = . 

 

Fig. 1 Frequency dependence real ( )ωΕ l
1  and imaginary part ( )ωΕ l

2  of longitudinal inductivity at 
temperature T=290° K for silver. 

The obtained dependencies ( )ωε l
1  and ( )ωε l

2  were also used to determine the dispersion 
of the real n  and imaginary parts κ  of refractivity N and then to calculate the frequency 
dependences of the volume absorptance ( )ωα  and reflectivity of the surface ( )ωR  using 
relations (5) and (6), Fig.2. Comparison of the obtained dependences ( )ωα  and ( )ωR  (solid 
lines) with reference data (dashed lines), Fig.2, exhibits quite good quantitative fitness in the 

28



A.V. Mazhukin, O.N. Koroleva. 

laser frequency range [ ] eV101.0 ÷∈ωh .3 

Fig. 2 a, b Frequency dependence of a) volume absorptance ( )ωα   b) surface reflectivity ( )ωR  at 
temperature T=290° K for silver. Solid lines – calculated curves, dashed lines – reference data. 

Fig. 3 a,b Temperature dependencies a) volume 
absorptance b) surface reflectivity at fixed frequencies: 
1. ( )m10,6  eV117,0 μλω ==h  2. ( )m5  eV248,0 μλω ==h  3. ( )m1,06  eV17,1 μλω ==h , 
4. ( )m0,8  eV55,1 μλω ==h , 5. ( )m0,694  eV79,1 μλω ==h , 6. ( )m0,51  eV43,2 μλω ==h , 
7. ( )m0,337  eV68,3 μλω ==h , 8. ( )m0,308  eV025,4 μλω ==h , 
9. ( )m0,248  eV99,4 μλω ==h , 10. ( )m0,193  eV42,6 μλω ==h , 
11. ( )m0,1  eV4,12 μλω ==h . 

The temperature dependencies ( )eT,ωα  and ( )eT,R ω   also have been calculated for a 
number of constant frequencies corresponding to the radiation wavelengths of widely used 
lasers. Both characteristics, tend to decrease as electron gas temperature rises in the laser 
range of ( ) m6.101.0 μλ ÷∈ , starting from the infra-red and to the ultraviolet band, Fig.3. 

2a 2b 

3a 3b 
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4 CONCLUSIONS 

Ultrashort and high-power pulsed laser treatment of metals is accompanied by generation 
of strongly non-equilibrium regions in solid with hot electrons and cold lattice. The electron 
subsystem can be heated to comparable to or exceeding the Fermi energy temperatures. 
Optical properties of Fermi-gas of metals are considered at arbitrary temperature ( FT ε≥ ). 
The expressions for temperature and frequency dependencies of permittivity are obtained 
from the solution of the kinetic equation. Frequency and temperature dependencies of 
reflectivity of irradiated surface and volume factor of absorption are determined using 
Fennel’s formulae. 
Acknowledgment. This study was partly supported by RFBR grants nos 10-07-00246-a, 12-
07-00436-a and 11-01-12086-ofi-m. 
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