SOME PROPERTIES OF k-GENERALIZED FIBONACCI NUMBERS

N. YILMAZ1, A. AYDOĞDU2*, AND E. ÖZKAN3

1Department of Mathematics, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, Karaman, Turkey.
2Department of Basic Sciences, Air NCO Vocational School, Turkish National Defense University, İzmit, Turkey.
3Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey.

*Corresponding author. E-mail: aydogduali84@gmail.com

DOI: 10.20948/mathmontis-2021-50-7

Summary. In the present paper, we propose some properties of the new family k-generalized Fibonacci numbers which related to generalized Fibonacci numbers. Moreover, we give some identities involving binomial coefficients for k-generalized Fibonacci numbers.

1 INTRODUCTION

Fibonacci numbers have a great importance in mathematics. It is one of the most popular sequences that have a lot of applications in many branch of mathematics as in diverse sciences [1, 2, 6, 7, 10-13, 16-20]. The Fibonacci numbers F_n are given by the recurrence relation

$$F_{n+1} = F_n + F_{n-1}, \quad n \geq 1$$

with the initial conditions $F_0 = 0$ and $F_1 = 1$. Koshy [9] written one of the most popular books of Fibonacci and Lucas numbers, and gave numerous recurrence relations, generalizations and applications of Fibonacci and Lucas numbers. For $a, b \in \mathbb{R}$ and $n \geq 1$, the well-known generalized Fibonacci numbers are defined

$$G_{n+1} = G_n + G_{n-1}$$

where $G_0 = a$ and $G_1 = b$.

El-Mikkawy and Sogabe [3] proposed a new family of k-Fibonacci numbers and gave the relationship between the k-Fibonacci numbers and Fibonacci numbers as follow:

$$F_{n}^{(k)} = (F_{m})^{k-r}(F_{m+1})^r, \quad n = mk + r.$$

In [14], Özkan et al. defined a new family of k-Lucas numbers and gave some identities of the new family of k-Fibonacci and k-Lucas numbers. Özkan et al. [15] introduced some identities of the new family of k-Fibonacci numbers.

In this study, we present some identities of the new family of k-generalized Fibonacci numbers. We give relationships between the new family of k-Fibonacci numbers and k-generalized Fibonacci numbers. Also, we introduce Cassini formulas of k-generalized Fibonacci numbers and some properties involving binomial coefficients. The rest of the paper is organized as follows: In Section 2 (Preliminaries), the fundamental definitions and theorems are given. Then main theorems and proofs are introduced in Section 3.

2010 Mathematics Subject Classification: 11B39.
Key words and Phrases: Fibonacci numbers; generalized Fibonacci numbers; generalized k-Fibonacci numbers.
2 PRELIMINARIES

Definition 2.1. [21] For \(n, k \ (k \neq 0) \in \mathbb{N} \), the new family of \(k \)-generalized Fibonacci numbers are defined by

\[
G^{(k)}_n = \frac{1}{\sqrt{5}}(\alpha + b \alpha)^m - (\alpha + b \beta)\beta^m = \sum_{r=0}^{\lfloor k \rfloor} \binom{k}{r} G_0 G_{r-1} B_r
\]

where \(n = mk + r, 0 \leq r < k \) and \(m \in \mathbb{N} \).

It is clear that for \(a = 0 \) and \(b = 1, G^{(k)}_n = F^{(k)}_n \) and for \(k = 1, r = 0 \) and \(n = m, G^{(1)}_n = G_n \).

Then they gave the relationship of between the new family of \(k \)-generalized Fibonacci numbers and generalized Fibonacci numbers as follow:

\[
G^{(k)}_n = (G_m)^k - r(G_{m+1})^r, \quad n = mk + r. \tag{2.1}
\]

Theorem 2.2. [9]

i. \(G^{3}_{n+1} - G_{n+1} - G^{3}_{n-1} = 3G_{n+1}G_{n} - G_{n-1} \)

ii. \(\sum_{i=1}^{n} F_i G_{3i} = F_n F_{n+1} G_{2n+1} \)

iii. \(G^2_n + G^2_{n+1} = (3a - b)G_{2n+1} - (a^2 + ab - b^2)F_{2n+1} \)

iv. \(F_{2n+1} = F_{n+1}^2 + F_n^2 \)

v. \(G^6_{n-1} + G^6_n + G^6_{n+1} = 2[2G^2_n + (a^2 + ab - b^2)(-1)^n] + 3G^2_{n-1}G^2_n G^2_{n+1} \)

vi. \(G_{nt}G_{n+t-2} - G^{2}_{n+t-1} = (a^2 + ab - b^2)(-1)^{n+t-1}F_k^2 \)

Theorem 2.3. [15]

\[
\sum_{i=1}^{n} F_i F_{3i} = F_{2n+1}^{(2)}(F_{2n+3}^{(2)} - F_{2n+1}^{(2)})
\]

Theorem 2.4. [3]

i. \(\sum_{i=0}^{k-1} (-1)^i \binom{k-1}{i} F^{(k)}_{mk+i} = (-1)^k F_{m} F^{(k-1)}_{(m-1)(k-1)} \)

ii. \(\sum_{i=0}^{k-1} \binom{k-1}{i} F^{(k)}_{mk+i} = F_{m} F^{(k-1)}_{(m+2)(k-1)} \).

3 MAIN RESULTS

In this section, we present some properties of the new family of \(k \)-generalized Fibonacci numbers.

Theorem 3.1. For \(n \geq 1 \), we have

\[
G^{(2)}_{2n+2} + G^{(2)}_{2n} = 2G^{(2)}_{2n+1} + G^{(2)}_{2n-2}.
\]

Proof. Using Theorem 2.2 (i), we have
\[
G_{n+1}^3 - G_n^3 = G_{n+1}^3 + 3G_{n+1}G_nG_{n-1}
\]
\[
(G_{n+1} - G_n)(G_{n+1}^2 + G_{n+1}G_n + G_n^2) = G_{n+1}^2 + G_{n+1}G_n^2 + 3G_{n+1}G_nG_{n-1}
\]
\[
G_{n-1}(G_{2n+2}^{(2)} + G_{2n+1}^{(2)} + G_{2n}^{(2)}) = G_{n-1}(G_{2n-2}^{(2)} + 3G_{2n+1}^{(2)}
\]
\[
G_{2n+2}^{(2)} + G_{2n+1}^{(2)} + G_{2n}^{(2)} = G_{2n-2}^{(2)} + 3G_{2n+1}^{(2)}
\]
\[
G_{2n+2}^{(2)} + G_{2n}^{(2)} = 2G_{2n+1}^{(2)} + G_{2n-2}^{(2)}
\]

Theorem 3.2. For \(n \geq 1 \), we have

\[
(3a - b) \sum_{i=1}^{n} F_iG_{3i} = (3a - b)F_nF_{n+1}G_{2n+1}
\]

Proof. Using Theorem 2.2 (ii), (iii), (iv) and Theorem 2.3, we have

\[
(3a - b) \sum_{i=1}^{n} F_iG_{3i} = (3a - b)F_nF_{n+1}G_{2n+1}
\]

\[
= F_nF_{n+1}(G_n^2 + G_{n+1}^2 + (a^2 + ab - b^2)F_{2n+1})
\]

\[
= F_nF_{n+1}(G_n(G_{n+1} - G_{n-1}) + G_{n+1}(G_{n+2} - G_n))
\]

\[
+ (a^2 + ab - b^2)(F_{n+1}^2 + F_n^2)
\]

\[
= F_nF_{n+1}(-G_nG_{n-1} + G_{n+1}G_{n+2})
\]

\[
+ (a^2 + ab - b^2)(F_{n+2}F_{n+1} - F_nF_{n-1})
\]

\[
= F_{2n+1}(G_{2n+3}^{(2)} - G_{2n-1}^{(2)} + (a^2 + ab - b^2)(F_{2n+3}^{(2)} - F_{2n-1}^{(2)}))
\]

\[
= F_{2n+1}(G_{2n+3}^{(2)} - G_{2n-1}^{(2)}) + (a^2 + ab - b^2)F_{2n+1}(F_{2n+3}^{(2)} - F_{2n-1}^{(2)})
\]

\[
= F_{2n+1}(G_{2n+3}^{(2)} - G_{2n-1}^{(2)}) + (a^2 + ab - b^2) \sum_{i=1}^{n} F_iF_{3i}.
\]

Theorem 3.3. For \(n \geq 1 \), we have

\[
(G_{2n-2}^{(2)})^3 + (G_{2n}^{(2)})^3 + (G_{2n+2}^{(2)})^3 = 2[2G_{2n}^{(2)} + (a^2 + ab - b^2)(-1)^n] + 3G_{2n-2}^{(2)}G_{2n}^{(2)}G_{2n+2}^{(2)}.
\]

Proof. Using Theorem 2.2 (v), we get

\[
(G_{2n-2}^{(2)})^3 + (G_{2n}^{(2)})^3 + (G_{2n+2}^{(2)})^3 = (G_{n-1}^{(2)})^3 + (G_n^{(2)})^3 + (G_{n+1}^{(2)})^3
\]

\[
= G_{n-1}^{6} + G_n^{6} + G_{n+1}^{6}
\]

\[
= 2[2G_n^{2} + (a^2 + ab - b^2)(-1)^n] + 3G_{n-1}^{2}G_n^{2}G_{n+1}^{2}
\]

75
\[= 2\left[2G_{2n}^{(2)} + (a^2 + ab - b^2)(-1)^n\right]^3 + 3G_{2n-2}^{(2)} G_{2n}^{(2)} G_{2n+2}^{(2)}. \]

Theorem 3.4. For \(n \geq 1 \), we have
\[G_{2n+2}^{(2)} - G_{2n}^{(2)} = G_{2n-2}^{(2)} + 2 G_{2n-1}^{(2)}. \]

Proof. From equation (2.1) and recurrence relation of generalized Fibonacci numbers, we get
\[G_{2n+2}^{(2)} - G_{2n}^{(2)} = G_{n+1}^2 - G_n^2 = (G_{n+1} - G_n)(G_{n+1} + G_n) = G_{n-1}(G_{n+1} + G_n) = G_{n-1}G_{n+1} + G_{n-1}G_n = G_{n-1}(G_n + G_{n-1}) + G_{n-1}G_n = G_{n-1}^2 + 2G_{n-1}G_n = G_{2n-2}^{(2)} + 2 G_{2n-1}^{(2)}. \]

Theorem 3.5. For \(n \geq 1 \), we have
\[G_{2n-2}^{(2)} + G_{2n-1}^{(2)} = G_{2n}^{(2)} + (a^2 + ab - b^2)(-1)^n. \]

Proof. Using Theorem 2.2 (vi), we have
\[G_{2n-2}^{(2)} + G_{2n-1}^{(2)} = G_{n-1}^2 + G_nG_{n-1} = G_{n-1}(G_n + G_n) = G_{n-1}G_{n+1} = G_{n}^2 + (a^2 + ab - b^2)(-1)^n = G_{2n}^{(2)} + (a^2 + ab - b^2)(-1)^n. \]

Theorem 3.6. For \(n \geq 1 \), we have
\[G_{4n+5}^{(4)} = (G_{2n}^{(2)})^3 + G_{4n+1}^{(4)} + 2G_{4n-3}^{(4)} + (G_{2n-2}^{(2)})^2 + 3G_{2n+3}^{(2)} G_{2n-1}^{(2)}. \]

Proof. Using Theorem 2.2 (i), we have
\[G_{4n+5}^{(4)} = (G_{n+1}^{3})^3 G_{n+2} = (G_{n}^{3} + G_{n+1}^{3} + 3G_{n+1}G_{n}G_{n-1})G_{n+2} = G_{n}^{3}G_{n+2} + G_{n+1}^{3}G_{n+2} + 3G_{n+1}G_{n}G_{n-1} = G_{n}^{3}(G_{n} + G_{n+1})G_{n-1}^3 (2G_{n} + G_{n-1}) + 3G_{2n+3}^{(2)} G_{2n-1}^{(2)} = (G_{2n}^{(2)})^2 + G_{4n+1}^{(4)} + 2G_{4n-3}^{(4)} + (G_{2n-2}^{(2)})^2 + 3G_{2n+3}^{(2)} G_{2n-1}^{(2)}. \]
Theorem 3.7. For \(k, n, t \geq 1 \), we have
\[
G_{kn+t}^{(k)}G_{kn+t-2}^{(k)} - \left(G_{kn+t-1}^{(k)} \right)^2 = \left\{ \begin{array}{ll} G_n^{2k-2}(-1)^n(a^2 + ab - b^2), & t = 1 \\ 0, & t \neq 1 \end{array} \right.
\]

Proof. For \(t = 1 \), we get
\[
G_{kn+1}^{(k)}g_{kn-1}^{(k)} - \left(G_{kn}^{(k)} \right)^2 = (G_{n-1}^{k-1}G_{n+1}^{k-1}) - (G_n^{k})^2 = G_n^{k-1}G_{n-1}^{k} - G_n^{k} = G_n^{2k-2}[G_{n-1}G_{n+1} - G_n^2] = G_n^{2k-2}(-1)^n(a^2 + ab - b^2).
\]

For \(t \neq 1 \), we get
\[
G_{kn+t}^{(k)}G_{kn+t-2}^{(k)} - \left(G_{kn+t-1}^{(k)} \right)^2 = (G_{n}^{k-t}G_{n+1}^{k-t}) - (G_{n}^{k-t+1}G_{n+1}^{t-1}) = G_n^{2k-2t+2}G_{n+1}^{2t-2} - G_n^{2k-2t-2}G_{n+1}^{2t-2} = 0.
\]

Theorem 3.8. For \(n \geq 1 \), we have
\[
G_{2(n+s-1)}^{(2)} - G_{n+s}G_{n+s-2} = (-1)^{n+s}(a^2 + ab - b^2).
\]

Proof. From the equation (2.1) and Theorem 2.2. (vi), we acquire
\[
G_{2(n+s-1)}^{(2)} - G_{n+s}G_{n+s-2} = G_n^2 - G_{n+s}G_{n+s-2} = -(G_{n+s}G_{n+s-2} - G_n^2) = -((-1)^{n+s-1}(a^2 + ab - b^2)) = (-1)^{n+s}(a^2 + ab - b^2).
\]

Theorem 3.9. For \(n \geq 1 \), we have
\[
\sum_{i=1}^{k}(-1)^i\binom{k-1}{i}G_{mk+i}^{(k)} = (-1)^{k-1}G_m^{(k-1)}G_{(m-1)(k-1)}.
\]

Proof. By using the equation (2.1) and the well known binomial property, we obtain
\[
\sum_{i=1}^{k}(-1)^i\binom{k-1}{i}G_{mk+i}^{(k)} = (-1)^{k-1}\sum_{i=1}^{k-1}(-1)^{k-1-i}\binom{k-1}{i}G_{m}^{k-i}G_{m+1}^{i} = (-1)^{k-1}G_m\sum_{i=1}^{k-1}\binom{k-1}{i}(-G_m)^{k-i-1}G_{m+1}^{i}
\]

77
\[(−1)^{k−1}G_m(G_{m+1} - G_m)^{k−1}\]

\[= (−1)^{k−1}G_mG_{m−1}\]

\[= (−1)^{k−1}G_mG_{m(m−1)(k−1)}^{(k−1)} \cdot\]

Theorem 3.10. For \(n \geq 1\), we have

\[\sum_{i=1}^{k−1} \binom{k−1}{i}G_{mk+i}^{(k)} = G_mG_{(m+2)(k−1)}^{(k−1)} \cdot\]

Proof. By taking account the equation (2.1) and the well known binomial property, we get

\[\sum_{i=1}^{k−1} \binom{k−1}{i}G_{mk+i}^{(k)} = \sum_{i=1}^{k−1} \binom{k−1}{i}G_m^{k−i}G_{m+1}^i\]

\[= G_m \sum_{i=1}^{k−1} \binom{k−1}{i}G_{m+1}^i(G_m)^{k−i−1}\]

\[= G_m(G_{m+1} + G_m)^{k−1}\]

\[= G_mG_{k+2}^{k−1}\]

\[= G_mG_{(m+2)(k−1)}^{(k−1)} \cdot\]

4 **CONCLUSIONS**

In this study, we prove that some identities of the new family of \(k\)-generalized Fibonacci numbers. Then, we show that some properties of the new family of \(k\)-generalized Fibonacci numbers related to generalized Fibonacci numbers. Furthermore, we extend Cassini’s formula to the new family of \(k\)-generalized Fibonacci numbers and present identities comprising binomial coefficients for the new family of \(k\)-generalized Fibonacci numbers.

REFERENCES

