A SHORT SURVEY OF THE IDEAL STRUCTURE OF
PRIVALOV SPACES ON THE UNIT DISK

ROMEO MEŠTROVIĆ* AND ŽARKO PAVIĆEVIĆ**

* Maritime Faculty
University of Montenegro
85330 Kotor, Montenegro
e-mail: romeo@ac.me

** Faculty of Science
University of Montenegro
81000 Podgorica, Montenegro
e-mail: zarkop@ac.me

Summary. For $1 < p < \infty$, the Privalov class N^p consists of all holomorphic functions f on the open unit disk \mathbb{D} of the complex plane \mathbb{C} such that

$$\sup_{0 \leq r < 1} \int_0^{2\pi} \left(\log^+ |f(re^{i\theta})| \right)^p \frac{d\theta}{2\pi} < +\infty.$$

M. Stoll [32] showed that the space N^p with the topology given by the metric d_p defined as

$$d_p(f, g) = \left(\int_0^{2\pi} \left(\log(1 + |f^*(e^{i\theta}) - g^*(e^{i\theta})|^p \frac{d\theta}{2\pi} \right)^{1/p}, \quad f, g \in N^p,$$

becomes an F-algebra.

In this overview paper we give a survey of some known results related to the ideal structure of Privalov classes N^p ($1 < p < \infty$). In Section 2 we point out that every space N^p ($1 < p < \infty$) is a ring of Nevanlinna–Smirnov type in the sense of Mortini [27]. Consequently, in the next section we establish the facts that N^p is a coherent ring and that N^p has the Corona Property. In Section 4 we present a result of N. Mochizuki [26] which gives a complete characterization of the closed ideals in N^p. Consequently, if \mathcal{M} is a closed ideal in N^p which is not identically 0, then there is a unique modulo constants

2010 Mathematics Subject Classification: 46E10, 46J15, 46J20, 30H50, 30H15.

Keywords and Phrases: Privalov class (space), inner function, ideal, ring of Nevanlinna–Smirnov type, finitely generated ideal, coherent ring, Corona Property, invariant subspace, Beurling’s theorem.
inner function φ such that $\mathcal{M} = \varphi N^p$. Using this result, it can be proved that a closed subspace E of N^p is invariant if and only if it has the form φN^p for some inner function φ. This result is in fact the N^p-analogue of the famous Beurling’s theorem for the Hardy spaces $H^q \ (0 < q < \infty)$.

1 INTRODUCTION

Let \mathbb{D} denote the open unit disk in the complex plane and let \mathbb{T} denote the boundary of \mathbb{D}. Let $L^q(\mathbb{T}) \ (0 < q \leq \infty)$ be the familiar Lebesgue spaces on \mathbb{T}. The Nevanlinna class N is the set of all functions f holomorphic on \mathbb{D} such that

$$\sup_{0 \leq r < 1} 2\pi \int_0^{2\pi} \log^+ |f(re^{i\theta})|^q \frac{d\theta}{2\pi} < \infty,$$

where $\log^+ |x| = \max(\log |x|, 0)$ for $x \neq 0$ and $\log^+ 0 = 0$.

It is well known that for each $f \in N$, the radial limit (the boundary value) of f defined as

$$f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$$

exists for almost every $e^{i\theta} \in \mathbb{T}$ (e.g., see [7, p. 97]).

The Smirnov class N^+ consists of those functions $f \in N$ for which

$$\lim_{r \to 1} 2\pi \int_0^{2\pi} \log^+ |f(re^{i\theta})|^q \frac{d\theta}{2\pi} = \int_0^{2\pi} \log^+ |f^*(e^{i\theta})|^q \frac{d\theta}{2\pi} < \infty.$$

Recall that we denote by $H^q \ (0 < q \leq \infty)$ the classical Hardy space on \mathbb{D}, defined as the set of all holomorphic functions f on \mathbb{D} for which

$$\|f\|_q^\max(1,q) := \sup_{0 \leq r < 1} 2\pi \int_0^{2\pi} |f(re^{i\theta})|^q \frac{d\theta}{2\pi} < +\infty.$$

Further, H^∞ is the space of all bounded holomorphic functions on \mathbb{D} with the supremum norm $\| \cdot \|_\infty$ defined as

$$\|f\|_\infty = \sup_{z \in \mathbb{D}} |f(z)|, \quad f \in H^\infty.$$

We refer [4] for a good reference on the spaces H^q and N^+.

For $1 < p < \infty$ the Privalov class N^p consists of all holomorphic functions f on \mathbb{D} for which

$$\sup_{0 \leq r < 1} 2\pi \int_0^{2\pi} \left(\log^+ |f(re^{i\theta})|^p \right)^\frac{1}{p} \frac{d\theta}{2\pi} < +\infty.$$

These classes were introduced in the first edition of Privalov’s book [28, p. 93], where N^p is denoted as A_p. It is known [26] (also see [19, Section 3]) that

$$N^q \subset N^p \ (q > p), \quad \bigcup_{p>0} H^p \subset \bigcap_{p>1} N^p, \quad \text{and} \quad \bigcup_{p>1} N^p \subset N^+, \quad$$

where the above containment relations are proper.
The study of the spaces N^p ($1 < p < \infty$) was continued in 1977 by M. Stoll [32] (with the notation $(\log^+ H)^p$ in [32]). Further, the topological and functional properties of these spaces were studied by C.M. Eoff ([5] and [6]), N. Mochizuki [26], Y. Iida and N. Mochizuki [10], Y. Matsugu [12], J.S. Choa [2], J.S. Choa and H.O. Kim [3], A.K. Sharma and S.-I. Ueki [30] and in works [19]–[25] of authors of this paper; typically, the notation of these spaces varied. Linear topological structure of the spaces N^p and their Fréchet envelopes was investigated in [16], [17], [21] and [22]. In particular, it was proved in [16, Theorem] that the space N^p ($1 < p < \infty$) does not have the Hahn-Banach approximation property, and hence, it does not have the Hahn-Banach separation property. Furthermore, the spaces N^p are neither locally convex [16, Corollary] nor locally bounded [23, Theorem 1.1]. Furthermore, the ideal structure of the algebras N^p was investigated in [14], [18], [22] and [26].

We refer the recent monograph [8, Chapters 2, 3 and 9] by V.I. Gavrilov, A.V. Subbotin and D.A. Efimov for a good reference on the spaces N^p.

In 1977 Stoll [32] proved the following result.

Theorem A ([32, Theorem 4.2]). The Privalov space N^p ($1 < p < \infty$) (with the notation $(\log^+ H)^p$ in [32]) with the topology given by the metric ρ_p defined as

$$
\rho_p(f, g) = \left(\int_0^{2\pi} \left(\log(1 + |f(e^{i\theta}) - g(e^{i\theta})|) \right)^p \frac{d\theta}{2\pi} \right)^{1/p}, \quad f, g \in N^p,
$$

is an F-algebra, i.e., an F-space (a complete metrizable topological vector space with the invariant metric) in which multiplication is continuous.

Notice that (1) with $p = 1$ defines the metric d_1 on the Smirnov class N^+. N. Yanagihara proved [33] that the metric d_1 induces the topology on N^+ under which N^+ is an F-algebra.

It is well known [4, p. 26, Theorem 2.10] that every non-zero function $f \in N^+$ admits a unique factorization of the form

$$
f(z) = B(z)S_\mu(z)F(z), \quad z \in \mathbb{D},
$$

where B is the Blaschke product with respect to zeros $\{z_n\} \subset \mathbb{D}$ of f (the set $\{z_n\}$ may be finite), S_μ is a singular inner function, F is an outer function for N^+, i.e.,

$$
B(z) = z^m \prod_{n=1}^{\infty} \frac{|z_n|}{z_n} \frac{z_n - z}{1 - \overline{z}_n z},
$$

with $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$, m a nonnegative integer,

$$
S_\mu(z) = \exp \left(-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) \right)
$$

with μ a measure on $[0, 2\pi]$.

16
with a positive singular measure \(d\mu \), and
\[
F(z) = \lambda \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |f^*(e^{it})| \, dt \right),
\]
(5)
where \(|\lambda| = 1 \) and
\[
\log |f^*(e^{i\theta})| \in L^1(\mathbb{T}).
\]
(6)
A function \(F \) with the factorization (5) and for which \(\log |F^*(e^{i\theta})| \in L^1(\mathbb{T}) \) is called an outer function. Furthermore, a function \(\varphi \) of the form
\[
\varphi(z) = B(z)S_\mu(z), \quad z \in \mathbb{D},
\]
(7)
where the functions \(B \) and \(S_\mu \) are given by (3) and (4), respectively, is called an inner function or the inner factor of a function \(f \) factorized by (2). Notice that the function \(\varphi \) defined by (7) is a bounded holomorphic function on \(\mathbb{D} \) such that \(|\varphi^*(e^{i\theta})| = 1 \) for almost every \(e^{i\theta} \in \mathbb{T} \), and hence, \(|f^*(e^{i\theta})| = |F^*(e^{i\theta})| \) for almost every \(e^{i\theta} \in \mathbb{T} \).

The inner-outer factorization theorem for the classes \(N^p \) is given by Privalov [28] as follows.

Theorem B ([28, pp. 98-100]; also see [6]). A function \(f \in N^+ \) factorized by (2) with (3) -- (6) belongs to the Privalov class \(N^p \) if and only if \(\log^+ |F^*(e^{i\theta})| \in L^p(\mathbb{T}) \).

Remark 1. If we exclude only the condition \((\log^+ |F^*|)^p \in L^1(T) \) from Theorem B, we obtain the well known canonical factorization theorem for the class \(N^+ \) (e.g., see [4, p. 26] or [28, p. 89]).

In this paper, we give a survey of known results related the ideal structure of the Privalov classes \(N^p \) for all \(1 < p < \infty \).

In Section 2 of [14], the ideal structure of subrings \(N^p \) of \(N \) with \(p > 1 \) is described as consequences of the results in [27, Sections 1 and 3] given for an arbitrary ring of Nevanlinna–Smirnov type in the sense of Mortini. In particular, \(N^p \) is a ring of Nevanlinna–Smirnov type (Theorem 1). We also give a necessary and sufficient condition for an ideal \(I \) in \(H^\infty \) to be the trace of an ideal \(J \) in \(N^p \) (Theorem 2). As an application, we give another sufficient condition for an ideal \(I \) in \(H^\infty \) to be trace of an ideal \(J \) in \(N^p \), and in this case there holds \(J = I N^p \) (Theorem 3). Theorem 4 gives a necessary and a sufficient condition for a prime ideal \(P \) in \(H^\infty \) to be the trace of some prime ideal \(Q \) in \(N^p \).

In Section 3 we notice that \(N^p \) is a coherent ring for all \(p > 1 \), that is, the intersection of two finitely generated ideals in \(N^p \) is finitely generated (Theorem 5). Furthermore, the algebra \(N^p \) has the Corona Property (Theorem 6). We also give a sufficient condition for an ideal \(I \) of \(N^p \), generated by a finite number of inner functions and which contains an interpolating Blaschke product \(B \), to be equal to the whole space \(N^p \) (Theorem 7).

The basic result in Section 4 is a result of N. Mochizuki [26] which gives a complete characterization of the closed ideals of \(N^p \) (Theorem 8). A closed subspace \(E \) of \(N^p \) is invariant under multiplication by \(z \) if and only if it is an ideal (Theorem 9). Applying this result and a result of Mochizuki [26, Theorem 4], it can be proved that a closed subspace \(E \) of \(N^p \) is invariant if and only if it has the form \(\varphi N^p \) for some inner function.
φ (Theorem 10). This result is in fact the N^p-analogue of the famous Beurling’s theorem for the Hardy spaces H^q $(0 < q < \infty)$.

2 THE IDEALS IN N^p AND H^∞

Following R. Mortini [27], we have the following definition.

Definition 1. A ring R satisfying $H^\infty \subset R \subset N$ is said to be of Nevanlinna-Smirnov type if every function $f \in R$ can be written in the form g/h, where g and h belong to the space H^∞ and h is an invertible element in R.

In particular, the Nevanlinna class N and the Smirnov class N^+ are rings of Nevanlinna-Smirnov type; hence the name (see [4, Chapter 2]). Further, Mortini noticed that by a result of M. Stoll [31], the ring $F^+ \cap N$ is of Nevanlinna-Smirnov type, where the space F^+ is the containing Fréchet envelope for N^+, consisting of those functions f holomorphic in D satisfying

$$\limsup_{r \to 1} (1 - r) \log M(r, f) = 0$$

with $M(r, f) = \max_{|z| = r} |f(z)|$ (see [34]).

By Theorem A, it is easy to show the following result (see [6], where N^p is denoted as N^+_{α}).

Theorem C ([6]). A function $f \in N$ belongs to the Privalov class N^p if and only if it can be expressed as the ratio g/h, where g and h are in H^∞, and h is an outer function such that $\log |h^*| \in L^p(T)$.

Clearly, by Theorem B, every function h described in Theorem C is an invertible element of N^p. Therefore, we have the following result.

Theorem 1 ([14, Theorem B]). N^p $(1 < p < \infty)$ is a ring of Nevanlinna–Smirnov type.

As an application of Theorems A and B and the results of Mortini in [27], in Section 2 of [14] were obtained some facts about the ideal structure of the algebra N^p.

Definition 2. We say that an ideal I in H^∞ is the trace of an ideal J in N^p if $I = J \cap H^\infty$.

The following result is an immediate consequence of Theorems A, B and [27, Satz 1, Satz 2].

Theorem 2 ([14, Theorem 1]). An ideal I in H^∞ is the trace of an ideal J in N^p if and only if the following condition is satisfied: If $f \in I$, F is an outer function with $\log |F^*| \in L^p(T)$, and if $fF \in H^\infty$, then $fF \in I$. In this case, J is a unique ideal in N^p with $I = J \cap H^\infty$, and there holds $J = IN^p$.

Further, the above theorem immediately yields the following result.

Theorem 3 ([14, Theorem 2]). Suppose that I is an ideal in H^∞ such that $f \in I$ implies that the inner factor of f also belongs to I. Then I is the trace of an ideal J in N^p, and there holds $J = IN^p$.

18
Remark 2. As noticed in [14, p. 130, Remark], it remains an open question is it true the converse of Theorem 3. While this is true for the Nevanlinna class and the Smirnov class [27, Korrolar 1 and Korrolar 2, resp.], the corresponding problem is here complicated by the fact that there exist outer functions which are not invertible in N^p.

Definition 3. An ideal P in a ring R is prime if whenever $fg \in P$, $f, g \in R$, then either f or g is in P.

A characterization of the invertible elements in N^p and a result in [27, Satz 3] yield the following result established in [14].

Theorem 4 ([14, Theorem 3]). A prime ideal P in H^∞ is the trace of some prime ideal Q in N^p if and only if P contains no outer functions F for which $\log |F^*| \in L^p(T)$. When this is the case, Q is a unique prime ideal in N^p with this property, and there holds $Q = PN^p$.

Remark 3. By a result of Mochizuki [26, Theorem 3] (see [14, p. 131, Remark]), every prime ideal of N^p which is not dense in N^p is equal to the set of functions in N^p vanishing at a specific point of \mathbb{D}. The analogous result for the class N^+ was proved in [29, Theorem 1].

3 FINITELY GENERATED IDEALS IN N^p

Definition 4. An ideal J in the ring R such that $H^\infty \subset R \subset N^p$, is called finitely generated if there exist elements $f_1, \ldots, f_n \in R$ such that

$$J = (f_1, \ldots, f_n) = \left\{ \sum_{i=1}^n g_i f_i : g_i \in R \right\}.$$

If n can be chosen to be one, then J is a principal ideal. A ring R is said to be coherent if the intersection of two finitely generated ideals in R is finitely generated.

Using the result in [13] that H^∞ is a coherent ring, it was shown in [27, Satz 7] that this is true for all rings of Nevanlinna–Smirnov type. In particular, by Theorem 1, we have the following result.

Theorem 5 ([14, Theorem 4]). N^p is a coherent ring for all $p > 1$.

Definition 5. We say that a commutative ring R with unit of holomorphic functions on the disk \mathbb{D} has the Corona Property if the ideal generated by $f_1, \ldots, f_n \in R$ is equal to R if and only if there is an invertible element f of R such that

$$|f(z)| \leqslant \sum_{i=1}^n |f_i(z)| \quad \text{for all} \quad z \in \mathbb{D}.$$

Definition 5 is motivated by the famous Corona Theorem of Carleson (for example, see [7, p. 324] or [4, p. 202]), which states that the algebra H^∞ of all bounded holomorphic functions on \mathbb{D} has the Corona Property. Mortini noticed [27, Satz 4] that by a result of
Wolff [7, p. 329], it is easy to show that every ring of Nevanlinna–Smirnov type has the Corona Property. In particular, by Theorem 1 we have the following result.

Theorem 6 ([14, Theorem 5]). The algebra N^p has the Corona Property for all $p > 1$.

Remark 4. It was proved in [11, Theorem 7] that there exists a subalgebra of the Nevanlinna class N containing the Smirnov class N^+ without the Corona Property.

Definition 6. A sequence $\{z_k\}_{k=1}^{\infty} \subset \mathbb{D}$ is called an interpolating sequence (for H^∞) if for every bounded sequence $\{\omega_k\}_{k=1}^{\infty}$ of complex numbers there exists a function f in H^∞ such that $f(z_k) = \omega_k$ for every $k = 1, 2, \ldots$. An interpolating Blaschke product is a Blaschke product given by (3) whose (simple) zeros form an interpolating sequence.

The following theorem given in [14] generalizes Theorem 6 in [27].

Theorem 7 ([14, Theorem 7]). Assume that I is an ideal in N^p generated by inner functions $\varphi_1, \ldots, \varphi_n$, and suppose that I contains an interpolating Blaschke product B with zeros $\{z_k\}_{k=1}^{\infty}$ such that

$$\sum_{k=1}^{\infty} \left(1 - |z_k|^2\right)^p \left|\log \left(|\varphi_1(z_k)| + \cdots + |\varphi_n(z_k)|\right)\right|^p < \infty.$$

Then $I = N^p$.

4 IDEALS IN THE SPACES N^p GENERATED BY INNER FUNCTIONS

Let U denote the operator of “multiplication by z” on the space N^p, that is,

$$(Uf)(z) = zf(z) \quad (f \in N^p, z \in \mathbb{D}).$$

U is called the right shift or unilateral shift because the Taylor coefficients of f one unit to the right.

Definition 7. An invariant subspace of the space N^p is defined as a closed subspace E of N^p such that $(Uf)(z) \in E$ whenever $f \in E$.

A characterization of the closed ideals of N^p is completely given by N. Mochizuki [26] as follows.

Theorem 8 ([26, Theorem 4]; cf. also see [22, Theorem 2.1]). Let \mathcal{M} be a closed ideal in N^p which is not identically 0. Then there is a unique modulo constants inner function φ defined by (7) such that $\mathcal{M} = \varphi N^p$, where

$$\varphi N^p = \{\varphi f : f \in N^p\}.$$

The following result was attributed in [22].

Theorem 9 ([22, Lemma 2.2]). A closed subspace E of N^p is invariant if and only if it is an ideal.
As an immediate consequence of Theorems 8 and 9, it is obtained in [22] the following N^p-analogue of the famous Beurling’s theorem for the Hardy spaces H^q ([1]; also see [9, Ch. 7, p. 99]).

Theorem 10 ([22, Theorem 2.3]; cf. also [20, the assertion 2.3 on p. 99]). *A closed subspace* E *of* N^p *is invariant if and only if it has the form* φN^p *for some inner function* φ.

Remark 5. Theorem 10 shows that there is a one-to-one correspondence between inner functions and invariant subspaces of N^p; so each invariant subspace of N^p being of the form of an ideal φN^p, where φ is an inner function.

Remark 6. By [29, Theorem 2], it follows that Theorem 8 is also true for the Smirnov class N^+.

REFERENCES

[18] R. Meštrović, Maximal ideals in some F-algebras of holomorphic functions, accepted for publication in *Filomat*.

Received July 10, 2014