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Summary. The article discusses the implementation of the algorithm for solving axisymmetric 

contact problems of the thermoelasticity theory using the mortar method. This algorithm is used 

for numerical simulation of the contact interaction of several bodies under thermomechanical 

loading. The ill-conditioned system of linear algebraic equations obtained as a result of finite 

element discretization is numerically solved using the modified symmetric successive over-

relaxation method (MSSOR), generalized to the case of contact of several bodies. The results 

of the algorithm application are demonstrated on a problem simulating some processes in a fuel 

element with a different number of bodies. The effect of the contacting bodies number and mesh 

steps on the number of iterations necessary to achieve a given accuracy while solving the system 

of equations is investigated. 

1 INTRODUCTION 

Accounting the contact interaction of various functional equipment units allows to obtain a 

more accurate estimation of the construction stress-strain analysis. The most promising and 

often used technique of the contact interaction studying is numerical methods, the leading place 

among which is occupied by the finite element method. 

It is often not possible to use matched meshes while modeling the contact of a large number 

of bodies. The numerical solution of such problems is carried out using various algorithms, 

among which we can distinguish the domain decomposition method [1,2], the penalty method 

[3,4], various versions of the Lagrange multiplier method [5,6], in particular, the mortar method 

[7,8], based on the construction of a sufficiently detailed auxiliary mesh for determining the 

Lagrange multipliers in the case when the meshes are unmatched. Algorithms designed for 

modelling the interaction of bodies in dynamic problems can also be noted [9]. 

This paper discusses a sufficiently general statement of the contact interaction problem of 

several bodies is given and an implementation of an algorithm for numerically solving contact 

problems using the mortar method is presented. The block system of linear algebraic equations 

with a saddle point obtained as a result of the problem discretization is ill-conditioned, and a 

modified symmetric successive over-relaxation method is used to solve it, generalized to the 

case of contact interaction of several bodies. 

The article considers the problem modeling some processes in a fuel element with a different 

number of contacting bodies on unmatched meshes. The dependence of iterations number on 

the selected finite element mesh and the number of bodies is analyzed. 
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2 MATHEMATICAL FORMULATION OF THE PROBLEM 

Let a group of axisymmetric thermoelastic contacting bodies (Fig. 1) be located in three-

dimensional space 3 , occupying a domain G G



 (  is a body number index), bounded 

by a piecewise smooth border .G G



    

 

Figure 1. Scheme of contact interaction of several bodies 

Consider the following problem: inside a cylindrical cladding NG  there is a column of 

several placed on top of each other identical cylindrical pellets 1 1,, NG G  , having an inner 

hole and chamfers at both ends. Each pellet (except 1G  и 1NG  ) comes into contact with two 

adjacent pellets and the cladding (it is believed that there is no initial gap between them). 1S  is 

the lower end of the lower pellet, 2S  is the inner surface of the pellets, 3S  is the top end of the 

top pellet, 4S  is the boundary between the inner surfaces of the pellets and the cladding, 5S  is 

the outer surface of the cladding. The lower ends of the cladding and lower pellets are fixed 

vertically. There is no friction on the contact surfaces. This problem simulates some 

thermomechanical processes taking place in a fuel element. 
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Suppose that the coupling effect (the dependence of temperature on the deformation of the 

body) can be neglected; therefore, we will solve the heat conduction problem separately, and 

use the obtained temperature field to solve the contact problem of the thermoelasticity theory. 

Consider the following initial-boundary value problem for the nonlinear heat equation: 

, ,( ) ( ) ) ;),( (ij j ic T T q
T

T k G
t

 


 


x x  

 

0( ) (,0 ) ;,T x GT x x  (1) 

1 2 3 1, 2 3( ) | ( ), , 0;,i S Sij j S wn k T T q S St S t     x x   

4 4,( ) | ( )[ ( , ) , ],( ) , 0,i ij j S fT T t T tn k ST T t   x x x   

where ( )c T  is the specific heat capacity of the medium,   is the medium density, t  is time, 

ijk  is the thermal conductivity tensor components, 
, j

jx
T

T


 , ( )q x  is the power of internal 

sources (drains) of the body, 
0 ( )T x  is the initial temperature, ,( )T tx  is temperature at time t , 

in  are the components of the unit vector of the external normal to the boundary G , ,( )wq tx  

is the heat flux density on the surfaces 
1S , 

2S , 
3S , ( )T  is the heat transfer coefficient on the 

surface 
4S , ( )fT x  is the temperature at a similar point lying on the opposite side of the contact 

pair. 

The mathematical formulation of the contact problem of the elasticity theory for the case 

when there are no bulk forces includes the following relations [10] for each body 3G  , 

participating in the contact ( , 1,3i j  ): 

 

 equilibrium equations 

, ( ) 0, ;ji j G  u x  (2) 

 kinematic boundary conditions 

1( ,) )( ;S 
0

u x u x x  (3) 

 force boundary conditions 

3 4( ) ( ), ;ji j in g x S S  u x  (4) 

 Cauchy relations 

, ,( ) ( )
1

( ),) ;
2

(ij i j j i Guu   x x x x  (5) 

 governing equations (Hooke’s law) 

0( ) ( ( ) ( )), ;ij ijkl kl klC G    x x x x  (6) 

 kinematic contact condition 
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1 2 12( ) ( ), ;n n ku u x S
  

 x x  (7) 

 force contact condition 

1 2 12( ) ( 0, ,)n n kS
    x x x  (8) 

where 
ix  are the coordinates of the vector x G ; ij  are the stress tensor components; 

kl  are 

the strain tensor components; 0

kl  are the components of the initial strain tensor (for a 

thermoelastic body such are thermal strains); 
iu  are the displacement vector components; ijklC

are the components of the elastic constants tensor; 
ig  are the surface force vector components; 

jn  are the components of the external normal vector to the corresponding surface jS ; i

nu
  are 

the projections of displacement vectors of boundary points on the direction of the external 

normal n  to the body 
i  boundary; i

n

  are the projections of stress vectors on the directions 

of external normals 
in . 

The conditions of contact interaction with respect to displacements and stresses must be 

fulfilled when solving the problem on the contact surfaces of bodies. 

For the case under consideration of the axisymmetric formulation of the problem, the vectors 

of stresses σ , strains ε , и and displacements u  cylindrical coordinate system are written as 

follows: 

, , .

r r

z z r

z

r r

u

u 

 

 

 

 

 

   
   

    
       

    
      

σ ε u   

The solution of the problem (2)-(8) is equivalent to [11] minimizing the functional 

2 1( ( ) )
1

2
( )

kS

T T

n n n

G S

dS u u dSdG      σ u g x x  (9) 

when fulfilling the kinematic boundary conditions (3), where n  are the Lagrange multipliers, 

which are projections of the stress vectors on the directions of the external normals, 

r r z znu u n u n  . 

3 BASIC MATRIX RELATIONS OF THE FINITE ELEMENT METHOD 

For the numerical solution of the problem (2)-(8) we will use the finite element method. The 

finite element mesh consists of second-order quadrangular elements. 

The components ( )e

ru , ( )e

zu  of the displacement vector u  inside the finite element with the 

index e  are determined using the dependence 

   
( )

( ) ( )

( )
,

e
e er

e

z

u
N u

u

 
 

 
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where  
( )e

N  is the matrix of the shape functions [12] of the finite element with the index e , 

and  
( )e

u  is the  the combined vector of displacement components in all nodes of the finite 

element with the number e . 

Relations between deformations and displacements are written as follows [12]: 

     
( )( )

,
ee e

B u    (10) 

where  
( )e

B  is the gradient matrix [11] of the finite element with the index e . 

Stresses are expressed through deformations using the Hooke law: 

     
( )( ) ( )

,
ee e

D    

or, taking into account (10), 

       
( ) ( )( ) ( )

,
e ee e

D B u    

where  
( )e

D  is the local elasticity matrix of the finite element [12] with the index e  for the 

body with the index  . For the axisymmetric formulation of the problem the matrix  
( )e

D  is 

written as follows: 

 
( )

1 0

1 0

,1 0
(1 )(1 2 )

1 2
0 0 0

2

e E
D

  

  

  
 



 
 

 
 

   
  

 

   

where E  is the Young's modulus and   is the Poisson's ratio. 

4 APPLICATION OF THE MORTAR METHOD FOR SOLVING CONTACT 

PROBLEMS 

The mortar method for solving contact problems of the elasticity theory is based on the 

independent finite element discretization of disjoint subdomains. The meshes on these 

subdomains are, generally speaking, unmatched on the contact line, and the continuity of the 

solution is achieved through the use of Lagrange multipliers [13]. Among the main advantages 

of the mortar method, the possibility of independent selection of various types of finite elements 

and shape functions both at the boundaries of contacting bodies and during integration along 

the contact line can be noted. 

To simplify the recording, we restrict ourselves to the case of two bodies with one pair of 

contact surfaces. Let the body mG  be master and the body sG  be slave. The contact line from 

the side of the body mG  is denoted by m  and from the side of the body sG  is denoted by s . 

We consider one-dimensional second order finite elements on the contact lines m  and s . 

From the nodes of these elements on the contact line m  we draw normals to contact line s . 
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For the finite elements formed at the intersection of the normals and 
s  we will carry out further 

integration, considering them also as one-dimensional quadratic elements with similar shape 

functions. The division of bodies into master/slave is largely conditional and non-obvious, but 

ultimately this choice determines the discretization of Lagrange multipliers [14]. 

Consider the following integral: 

1 1

( ) ,
m

mi si

sk k
T T T

i i

sd d d  
   

    m s m
λ u u λ u λ u  (11) 

where 
m s    , 

mk  and 
sk  are the total number of finite elements into which the contact 

lines 
m  and 

s  are divided, respectively, the vectors 
m

u  and 
s

u  consist of the normal 

components of the displacement vectors of the finite element nodes on the contact lines 
m  and 

s , the vector λ  consists of Lagrange multipliers corresponding to the projections of stress 

vectors on the directions of external normals on the contact line 
s . Inside the finite element 

with the index ( )e  values of 
n , 

su  and mu  are expressed as follows: 

           
( ) ( ) ( )( ) ( ) ( )

, , ,
e e ee e e

n s s s m m mN u N u u N u      

where  
( )e

N ,  
( )e

sN ,  
( )e

mN  are the matrices of the shape functions of the one-dimensional 

quadratic element with the index ( )e . 

Minimization of functional (9) together with integral (11) leads to the formation of the 

following system of linear algebraic equations [15]: 

11 1

22 2

( 1)( 1) 1

1 2 1

,
N N N

NN N

T T T T

N N
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A M

A M
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M M M M

    



    
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    
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    
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0 0 0 u R
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0 0 0 u R
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0 λ 0
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where 
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e G
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

 
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 
 
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        ( ( (

1

) ) )
,

i
e T e T e

k

i i

e

SR a N g dV


   

 1 2 1 ,q q

T

       

 10 0 0 0 0 0 0 0 ,i i ij ipM M M M   

where N  is the number of bodies, q  is the number of contact pairs and in the columns of the 

48



P.S. Aronov, M.P. Galanin and A.S. Rodin. 

matrices 
iM  corresponding to the numbers of the bodies in contact with the body with the 

number i , are the following matrices 

       
( ) ( ) (

1

) ( )
.

i

si

e T e T e

ij S

e

e

S

k

M a N N d a


 
       

 
   

Here  
( )e

Ga ,  
( )e

Sa  are the matrices of geometric interactions of the finite element with the 

index ( )e ,  
( )e

iD are the local elasticity matrices of the finite element with the index ( )e ,  ig

are the local surface force vectors, 
ik  are the number of finite elements into which the body 

iG

is divided. 

Matrices 
iiA  have the dimension 

i in n , , ,1i N  , 
in  is the the number of unknown 

displacements in the i -th body, 
1 Nnn n   is the total number of unknown displacements, 

matrices 
iM  have the dimension 

in m , 1 qmm m   is the total unknown Lagrange 

multipliers, matrices ijM  have the dimension i jn m , jm  is the the number of unknown 

Lagrange multipliers for the j -th contact pair, which includes the i -th body. 

5 ALGORITHM FOR SOLVING THE SYSTEM OF LINEAR ALGEBRAIC 

EQUATIONS 

The system of linear algebraic equations (12) with a saddle point is ill-conditioned and has 

a zero block on the main diagonal, therefore, for its numerical solution we will use modified 

symmetric successive over-relaxation method (MSSOR) [16,17], generalized to the case of 

contact of several bodies: 
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(13) 
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where k  is an iteration number,   and   are the iterative parameters. 

Before the first iteration, it is necessary to set the initial (zero) value to the vector of Lagrange 

multipliers λ  and then calculate the displacement vectors 
i

u  from the first m  equations of 

system (12). 

Using the scheme (13) allows us to reduce the solution of the general ill-conditioned system 

of equations for all contacting bodies to the sequential solution of three blocks of systems of 

equations: N  systems for calculating 


1
k

2
iu , q  systems for calculating k 1

iλ  и N  systems for 

calculating k 1

iu . Within each of these blocks, systems of equations can be solved independently 

of each other, including in parallel. All these systems of equations are solved using the 

conjugate gradient method. Matrices selected as preconditioners are

1

1diag{( })T
N

jji ji

j

jiB M A M


 , and the values of the iterative parameters are set as follows:

0,05  , 0,5  . 

6 RESULTS OF THE NUMERICAL SOLUTION 

First, we will solve the initial-boundary value problem of the heat equation (1), and we will 

use the obtained temperature field to solve the contact problem of the elasticity theory (2)-(8). 

In the pellets, a constant heat release is set, and the temperature in all nodes of the cladding is 

assumed to be constant (623 K). Constant pressure 1 10p   MPa is set on the outer surface of 

the cladding, and constant pressure 2 50p   MPa is set on the upper surface of the upper pellet. 

The pellets are made of uranium dioxide, the cladding is made of an alloy of zirconium. The 

elastic moduli, thermal expansion coefficients, specific heat capacity and thermal conductivity 

of both materials are temperature dependent, and the Poisson's ratios and density are constant. 

We will carry out a series of calculations with a different number of pellets. For the case of 

five pellets, we present the distribution of radial and axial displacements and stresses at the 

contact boundary between the pellets and the cladding. We will consider unmatched meshes: 

the pellets 1 1, , NG G   are divided into 40 elements in the r  direction and into 80 elements in 

the z  direction, and the cladding NG  is divided into 10 elements in the r  direction and into 

400 elements in the z  direction. 

The considered problem has the following specific features: 

 at the contact boundaries between the pellets, almost all finite elements (except for a 
few elements near the inner surface) exit the contact; 

 axial displacements reach significant values: for example, for the case of 100 pellets, 

the upper pellet displacements relative to its initial position by an amount comparable 

to the size of several pellets. 

Fig. 2-3 show the graphs of the distributions of radial and axial displacements at the 

boundary between the pellets and the cladding. Fig. 4-5 show the graphs of the distributions of 

radial and axial stresses at the boundary between the pellets and the cladding. The graphs of 

radial displacements stresses are visually indistinguishable and coincide everywhere, except for 

the vicinity of the chamfers of the pellets; no oscillations are observed. 
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Figure 2. Radial displacements ( )ru z  in the elements nodes 

 

Figure 3. Axial displacements ( )zu z  in the elements nodes 

 

Figure 4. Radial stresses ( )r z  in the elements nodes 
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Figure 5. Axial stresses ( )z z  in the elements nodes 

For the case of 100 pellets, we present fragments of two-dimensional distributions of 

displacements and stresses in the middle of a pillar column. 

 
a) 

 
b) 

 
c) 

Figure 6. Two-dimensional distributions in the elements nodes of the 49th and 50th pellets: a) — 

radial displacements, b) — radial stresses, c) — axial stresses 
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a) 

 
b) 

 
c) 

Figure 7. Two-dimensional distributions in the elements nodes of the cladding: a) — radial 

displacements, b) — radial stresses, c) — axial stresses 

Fig. 6-7a show two-dimensional distributions of radial displacements, and Fig. 6-7b and 6-7c 

show two-dimensional distributions of radial and axial stresses for the case of 100 pellets. 

Fragments of the distributions corresponding to the 49th and 50th pellets are shown, and when 

constructing deformed bodies, the applied displacements were increased by 10 times for pellets 

and 50 times for the cladding for clarity. 

We will carry out a series of calculations with three different unmatched meshes: 

 Mesh 1: the pellets are divided into 20 elements in the r  direction and into 

40 elements in the z  direction, the cladding is divided into 5 elements in the r  

direction, 

 Mesh 2: the pellets are divided into 40 elements in the r  direction and into 
80 elements in the z  direction, the cladding is divided into 10 elements in the r  

direction, 

 Mesh 3: the pellets are divided into 80 elements in the r  direction and into 
160 elements in the z  direction, the cladding is divided into 20 elements in the r  

direction. 

In the z  direction the cladding is divided into the required number of elements in proportion 

to the number of pellets. For example, for five pellets, this will be 200, 400, and 800 elements 

for the three variants of the mesh. Fig. 8-9 show the graphs of the distribution of axial stress at 

the contact boundary between the 3rd pellet and the cladding. It is seen that when using a coarser 

mesh, oscillations arise near the chamfers, with an increase in the number of elements, the 

amplitude of the oscillations decreases and on the smallest mesh they disappear. 
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Figure 8. Radial stresses ( )r z  in the elements nodes of the 3rd pellet (mesh 1) 

 

Figure 9. Radial stresses ( )r z  in the elements nodes of the 3rd pellet (mesh 2) 

 

Figure 10. Radial stresses ( )r z  in the elements nodes of the 3rd pellet (mesh 3) 
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Let us compare the number of iterations necessary to achieve the given accuracy of solving 

the system of equations (12), with a different number of pellets. In this case, the relative 

accuracy is calculated as follows: 

2 2

2 2

ˆ ˆ

,

)()(
i i i i

i i

r r z

i

i r

i

z

i

zu u
S
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where ˆ
ir

u , ˆ
iz

u  are the values of radial and axial displacements at a new iteration, 
iS  is the sum 

of the areas of the finite elements, which includes the considered node, divided by the number 

of nodes in the finite element. 

 
  Mesh 1 Mesh 2 Mesh 3 

210
 5 5 6 

310
 6 7 8 

410
 12 15 21 

510
 29 38 56 

Table 1. The number of iterations required to achieve accuracy of   (5 pellets) 

  Mesh 1 Mesh 2 Mesh 3 
210
 8 10 12 

310
 14 18 22 

410
 30 39 52 

510
 64 80 94 

Table 2. The number of iterations required to achieve accuracy of   (25 pellets) 

  Mesh 1 Mesh 2 Mesh 3 
210
 16 19 24 

310
 25 31 40 

410
 51 66 90 
55 10  85 102 148 

Table 3. The number of iterations required to achieve accuracy of   (100 pellets) 

Tables 1-3 show that with increasing accuracy, the number of bodies and decreasing mesh 

step, the number of iterations increases. For 100 pellets, maximum accuracy of 
55 10    is 

achieved, there is no convergence for the accuracy of 
510  . 

Let us determine some empirical patterns of growth in the number of iterations depending 

on the number of pellets and nodes of the finite element model. With an increase in the number 

of nodes, the number of iterations increases in proportion to yn , where (0,225;0.275)y . The 

above range was obtained for calculations with a different number of bodies (5, 10, 25, 50, 100 

pellets). It is known that when using the conjugate gradient method without preconditioning for 
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matrices obtained by discretizing the Laplace operator, the number of iterations increases in 

proportion to n  [18]. If unit matrices are used as preconditioners 
iB , then there is no 

convergence. The selected preconditioner allows faster convergence compared to the conjugate 

gradient method for conventional matrices. 

As the number of pellets increases, the number of iterations increases in proportion to xN , 

where (0,37;0,41)x . This range was obtained for calculations with three different meshes 

(Fig. 11). The number of iterations for the calculation with five pellets is somewhat inconsistent 

with the proposed regularity, therefore, 10N   was taken as a starting point for constructing 

the dependence graph of 0,4CN . In real fuel elements, the number of pellets reaches several 

hundred; therefore, the proposed algorithm allows us to obtain a numerical solution with 

sufficient accuracy for a moderate number of iterations. 

 

Figure 11. Dependence of the number of iterations on the number of pellets for 
410   

7 CONCLUSIONS 

The statement of the problem of contact interaction of a system of axisymmetric 

thermoelastic bodies under thermomechanical loading is presented. The results of the numerical 

implementation of the algorithm for solving the problem using the mortar method are presented 

on the example of a demonstration task that simulates some processes in a fuel element. A 

generalization of the algorithm for solving a system of linear algebraic equations arising as a 

result of discretization of the problem by the finite element method, in the case of contact of 

several bodies. A comparison is made of the number of iterations required to achieve a given 

accuracy of solving the system of equations, depending on the number of pellets and mesh 

steps. It is shown that the proposed method for the numerical solution of an ill-conditioned 

system of equations allows convergence to be achieved with sufficient accuracy for a moderate 

number of iterations. It is also demonstrated that with an increase in the number of elements, 

the amplitude of the axial stress oscillations arising near the chamfers of the pellets decreases. 
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