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Summary. This paper discusses the problem of describing thermodynamic properties of a

substance at high temperatures and pressures on the basis of the fundamental equation of state

(FEoS). This FEoS has the following characteristics: it transforms into the virial equation of

state in the region of low densities; it is converted into the Berestov equation in the vicinity

of the critical point. FEoS testing has been carried out on known thermodynamic properties

of argon and has allowed establishing its workspace: by the pressure up to 1000 MPa; by the

temperature from the temperature of the triple point to 1200 K. It has been shown that our FEoS

can qualitatively correctly describe the thermal surface of argon up to 17 000 K. A comparison

of FEoS has been made with some well-known equations of state. When developing FEoS of

argon, we have used elements of the similarity theory, which has allowed reducing the number

of individual parameters of this FEoS.

1 INTRODUCTION

We investigate a problem of describing the thermophysical properties of substances in a

wide range of temperatures and pressures including the critical region. The problem attracts the

attention of many researchers [1–24]. In particular, this problem is actual when studying the

behavior of substances:

• in the range of highly developed density fluctuations near the critical point;

• at high temperatures and high pressures.

To describe the properties of pure substances at high pressures and high temperatures, the

authors of [25–32] have developed a number of fundamental equations of state (FEoS). When

describing the liquid behavior in the vicinity of the critical point, we have used previously a

number of approaches and developed some equations of state (EoS):
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• scaling EoSs and crossover EoSs in a parametric form and with (the density, the temper-

ature variables) [1, 2, 10, 12, 16, 24];

• FEoS of the virial type [3, 6, 9, 17];

• FEoS [14] based on requirements of the scaling theory (ST) for the critical region [33];

• FEoS [4,5,7,8,11,15,18–20,22,23] converted into a Widom EoS and valid in the vicinity

of the critical point.

We have analyzed approaches [1–12,14–20,22–24] and have got the following results. Scal-

ing EoSs [1, 2, 16, 24] and crossover EoSs [10, 12] meet the requirements of ST [33], but they

have a narrow work area limited by temperatures T (0.9Tc < T < 2Tc [12], here Tc is the critical

temperature), and, therefore, can not be used when modeling thermodynamic properties of a

substance in the range of high temperatures and high pressures.

One of the disadvantages of the crossover EoS [12] is the need to use different critical tem-

peratures: one Tc to calculate the pressure (p) and another Tc to calculate the isochoric heat

capacity (CV ). FEoS [3, 6, 9, 17] do not meet the requirements of ST. Therefore, these EFoSs

do not describe the sound velocity (w), CV , the isobar heat capacity (Cp), and isothermal com-

pressibility factor (K) in the critical region with acceptably small uncertainties. At the same

time, these EFoSs describe the equilibrium properties of argon in the regular part of the ther-

modynamic surface with low uncertainties. For example, FEoS of argon is proposed [9] in this

form. The workspace of FEoS FEoS [9] is (limited by pressures 0 6 p 6 1000 MPa, by tem-

peratures 83 6 T 6 700 K) and can be successfully used when predicting thermal properties at

high temperatures.

Bezverhiy et al [14] has developed FEoS, which takes into account the feature presence of

CV (T,ρ) as a known function in the critical region, here ρ is the density. Our analysis shows

that EFoS [14] reproduces power laws of ST qualitatively incorrectly. For example, the critical

isotherm [14] follows ∆p ∝ (∆ρ)3
. It should be ∆p ∝ ∆ρ |∆ρ |δ−1

[33], here ∆p = (p− pc)/pc;

∆ρ = (ρ −ρc)/ρc; pc is the critical pressure; ρc is the critical density; δ is the critical index of

the critical isotherm.

Empirical FeoSs are proposed in [5,7,8,11]. They qualitatively correctly reproduce all of ST

power laws when describing properties in the vicinity of the critical point.

On the basis of the phenomenological theory of the critical point [34], the authors of [4,

15, 18–20, 22, 23] developed FEoS which is not inferior to scaling EoS and crossover EoS

when describing the asymptotic vicinity of the critical point. We mark that FEoSs [4, 5, 7, 8,

11, 15, 18–20, 22, 23] do not satisfy the theory of extended scaling [2]. Indeed, the function,

CV (T,ρc) [4, 5, 7, 8, 11, 14, 15, 18–20, 22, 23], follows CV ≃ Aτ−α +Cτ . It is shown in [2] that
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CV (T,ρc) should be CV ≃ Aτ−α +Bτ−α+∆ +Cτ , here τ = (T −Tc)/Tc; α and ∆ are the critical

indexes. In addition, our analysis shows that FEoSs [4, 5, 7, 8, 11, 14, 15, 18–20, 22, 23] are

inferior to FEoS [9] when describing properties at high temperature region. For example, there

are a discrepancy between p values calculated by EFoS [9] and p values calculated by [20] at

17 000 K these deviations exceed 50%.

In this paper on the basis of the approach [35], we plan to develop a FEoS that meets the

following requirements:

• satisfies ST requirements [33] and does not inferior to EoSs [10, 12] when describing

properties in the critical region;

• simulates the thermal surface of argon at temperatures up to 17 000 K and by pressures

up to 12 GPa;

• can be converted into the Berestov equation [2] in the critical region.

2 STRUCTURE OF FEOS

By analogy with [4, 15, 18–20, 22, 23], this FEoS has the following structure:

F(ρ ,T ) = Freg(ρ ,T )+Fnreg(ρ ,T ), (1)

where F(ρ ,T ) is the Helmholtz free energy; Freg(ρ ,T ) is a regular function; Fnreg(ρ ,T ) is an

irregular component of the Helmholtz free energy:

Fnreg(ρ ,T ) = RTcφ(ω, t)
(

|∆ρ |δ+1
a0(x)+ |∆ρ |

δ+1+ ∆
β a1(x)

)

, (2)

where φ(ω, t) is the regular function; R is the gas constant; ω = ρ/ρc; x = τ/|∆ρ |1/β is the

scaling variable; t = T/Tc; β is the critical index.

We notice: there is a principal difference of our FEoS from FEoS [4, 15, 18–20, 22, 23]. We

have included an additional component in Fnreg(ρ ,T ). There is a special scale function, a1(x),

in this additional component recommended in [35]. This principal modernization has allowed

us to improve a FEoS structure and to meet the requirements [2].

The scaling functions a0(x) and a1(x) are calculated based on the following:

• a new representation of the scaling hypothesis [34, 35];

• the Benedek hypothesis [36];

• the Berestov equation [2].
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i j = 0 j = 1 j = 2

0 0 0

1 0 0

2.727 031 612 1447

−2.180 917 085 2935

2 0

3 0

0

−1.651 807 350 2083

4 0

2.018 179 285 6405

1.951 547 138 476

5.861 967 866 4433

5 0 −2.078 078 708 984

−2.801 735 606 01726  −0.283 648 592 739 017
    −0.031 673 399 139 638

    − 0.117 319 5 11 7 89 66

    3.235 0 97 0 27 9 45 2
   0.203 261 164 281 0 7
−1.850 670 154 3516

2.497 843 489 6566

−1.164 995 874 2581

9 0.413 193 730 791 89

9.620 211 455 1673

−3.476 213 158 3227

−0.811 288 614 251 57

0.766 664 260 646 57

0.450 684 903 397 98

−0.239 259 405 790 52

−1.024 947 033 0846

    2.810 166 015 2324

−2.801 124 9 73 5 011

−2.592 742 798 4863

5.578 734 268 4796

−2.485 069 647 1961

−2.392 997 971 8019 0.759 164 862 584 33

10  − 0.765 606 7 37 657 4 9
11  − 0.650 4 91 354 2378

12     1.808 588 644 5017 
13  −1.042 305 9 56 0 28 
14  −0.813 9 44 9 71 192 7 5 
15     1.328 0 57 607 1621 0

−0.221 489 078 823 57

3.119 794 125 8801

−0.933 985 969 4002

−0.585 625 628 796 48 0.091 451 137 589 177

0

16 −0.486 803 106 500 06

17 −0.243 474 625 433 64

18 0.327 530 667 992 16

19  −0.154 068 046 320 52

0.660 860 378 937 56

−0.286 546 955 475 54

20 0.039 124 504 337 479 0.068 175 553 922 501

−0.008 667 473 663 7731

0.001 865 695 143 8862

21 −0.005 346 887 409 843 −0.008 772 962 958 1014 0

22    0.000 310 067 180 058 02 0.000 478 732 897 948 04      −2.5448089017224 × 10−5

Table 1: Coefficients Ci, j of FEoS (1).

These functions are written the following form:

a0(x) =−
u0kγ1x2−α

0

2αb2α1(1− ε)

[

(ϕ +ϕ1)
2−α

− ε(ϕ +ϕ2)
2−α

]

+
u0x

γ
0

2k
(ϕ +ϕ3)

γ +u0C0, (3)

a1(x) =−
u1kγ2x2−α+∆

0

2αb2α2(1− ε)

[

(ϕ +ϕ1)
2−α+∆

− ε(ϕ +ϕ2)
2−α+∆

]

+
u1x

γ+∆
0

2k
(ϕ +ϕ3)

γ+∆ +u1C1,

(4)

where ε0 = x1/x2; α1 = (2−α)(1−α); γ1 = γ(γ −1); γ2 = (γ +∆)(γ +∆−1); α2 = (2−α +

∆)(1−α+∆); ϕ = x/x0; ϕi = xi/x0, i∈ {1,2,3}; b2 = (γ−2β )/[γ(1−2β )]; k = [(b2
−1)/x0]

β
;

γ is the critical index; x0, u0 and u1 are the individual parameters; Zc = pc/(RρcTc)× 103; C0
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i j = 3 j = 4 j = 5

0 4.482 248 574 7539 1.808 465 772 8776

1 −3.225 639 106 0006

2.332 643 055 2399

−1.048 810 609 669 −0.932 531 831 731 91

2 −3.143 085 800 7921 −7.416 650 230 6154 −4.156 240 517 2991

3 7.651 653 302 7528 6.805 576 926 7176 3.940 459 100 9914

4 6.118 667 623 2535 4.737 381 837 8476 0.741 441 138 784 28

−8.232 510 077 0624 −2.172 672 507 20285 −8.029 797 760 4914 6
−0.081 651 952 400 293

7 8.388 156 700 3335

1.488 772 709 3593 0.930 235 432 967 88

2.510 816 288 7711 −0.130 873 463 355 37

8  −4.059 017 137 1799 0

9  −0.103 759 991 449 93

−1.089 247 218 7001

 −0.277 754 425 60302 0

10 1.129 529 996 898 0.093 168 194 589 203 0

11 −0.543 765 088 527 54 0.151 336 027 7963 0

12     0.008 645 103 248 2461    −0.082 484 913 633 882 0

13 0.001 821 779 428 3432     0.012 151 299 548 948 0

Table 2: Coefficients Ci, j of FEoS (1).

and C1 are the constant coefficients which value is found from the equations

(δ +1)a0|ϕ=−1 +
x0

β
a′0|ϕ=−1 = 0, (5)

(

δ +1+
∆

β

)

a1|ϕ=−1 +
x0

β
a′1|ϕ=−1 = 0. (6)

We have selected the regular component (1) in the form [19]:

Freg(ρ ,T ) = F0(ρ ,T )+RT ωy2 +RT ω(Zc −0.2)y6 +RT ωD3(y4 − y6)

+RT ωτ1

[

D1(ω −3)+D2

(

ω2
−2ω

)

]

+RT ω
22

∑
i=0

20

∑
j=0

(

Ci, jτ
j

1∆ρ i
)

, (7)

where F0(ρ ,T ) is the ideal gas component of F(ρ ,T ); τ1 = Tc/T −1; functions y2, y4, y6 have

the following form: y2 = −7.7/6+ 2.9/6∆ρ − 1.1/6∆ρ2 + 0.05∆ρ3, y4 = 5− 4∆ρ + 3∆ρ2
−

2∆ρ3 +∆ρ4, y6 = 4−3∆ρ +2∆ρ2
−∆ρ3 +∆ρ5.

We have calculated ϕ1, ϕ2, ϕ3 values according to the method detailed in [15]. It let us got

ϕ1 = 2.80722347, ϕ2 = 14.4717304, ϕ3 = 5.73246825.
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i j = 6 j = 7 j = 8

0 1.942 056 320 0621 3.245 246 493 1065 −8.239 406 700 9885

1  −1.034 640 564 3285

2  −0.944 139 567 2871

−0.970 159 560 317 12 −0.011 163 693 637 208

0.298      859 602 686 75 0.039 252 086 979 538

3 1.204 115 946 6534 0 0

4  −0.327 499 512 264 19 0 0

i j = 9

0   −18.746 448 404 883

j = 10

51.077 633 966 366

j = 11

68.645 329 452 91

1 0.541 072 550 799 12 0 0

2   −0.178 044 619 880 26 0 0

i j = 12 j = 14

0 −182.047 371 3271

j = 13

−144.870 071 874 34 383.406 155 478 06

i j = 15 j = 16

0 174.017 641 515 55 −472.418 838 330 36

j = 17

−110.347 173 018 13

i j = 18

0 314.552 869 844 35

j = 19

28.506 239 206 301

j = 20

−87.384 487 306 415

Table 3: Coefficients Ci, j of FEoS (1).

We have chosen the crossover function in accordance with the recommendations [7]:

φ(ω, t) = φ0(ω)φ1(t), φ0(ω) =
[

(

1−ω
)m

−1
]2

, φ1(t) = 1/t2, (8)

where m ∈ N.

We have tested FEoS (1) with components (2)–(4) and (7) on the example describing the

equilibrium properties of argon [37–54].

3 FEOS OF ARGON

Select the ideally-gas component of argon F0(T,ρ) according to the recommendations of [9]:

F0(ρ ,T ) = RT
(

lnω +a0
1 +a0

2t−1
−1.5lnt

)

, (9)

where a0
1 = 58.31666243 and a0

2 = 524.94651164.
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Figure 1: Isotherms, the liquid–gas coexistence curve and the melting line of argon. Isotherms 
calculated using FEoS (1): 1—critical isotherm; 2—300 K; 3—573.15 K; 4—1223.15 K; 5—2300 K; 
6—17 000 K. Experimental data: 7—150.65 K [42]; 8—300 K [3]; 11—2300 K [3]. Tabulated data: 9

—573.15 K [43]; 10—1223.15 K [43]; 12—17 000 K [9]; 13—tabulated data on the density at the 
saturation line [9]; 14—experimental data on the density of a saturated liquid and saturated vapor [49]; 
15—data on the density at the saturation line calculated by FEoS (1); 16—data on the density at the 

melting line [9].

We have calculated expressions for compressibility Z on the basis of FEoS (1) with compo-

nents (2)–(4) and (7):

Z(ρ ,T ) = 1+ y1ω2 + y2ω +D3

(

y3ω2 + y4ω − y5ω2
− y6ω

)

+
(

y5ω2 + y6ω
)

(Zc −0.2)

+ω
22

∑
i=0

20

∑
j=0

Ci, jτ1
j∆ρ i−1(iω +∆ρ)+D1ωτ1(2ω −3)+D2ω2τ1(3ω −4)

+Zcω|∆ρ |δ φ1(t)t
(

φ0(ω)sign(∆ρ)h0(x)+φ ′

0(ω)|∆ρ |a0(x)
)

+Zcω|∆ρ |
δ+ ∆

β φ1(t)t
(

φ0(ω)sign(∆ρ)h1(x)+φ ′

0(ω)|∆ρ |a1(x)
)

, (10)

where y2i−1 = y′2i(ω) (i ∈ {1,2,3}); hn(x) are scale functions of chemical potential [27]:

h0(x) = (δ +1)a0(x)−
x

β
a′0(x), h1(x) =

(

δ +1+
∆

β

)

a1(x)−
x

β
a′1(x). (11)
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Figure 2: Relative deviations δ p = (pexp − pcal)/pexp100% corresponded to pcal values calculated with the help 
of FEoS (1) and FEoS [9] in the metastable states of argon: (pexp, ρexp, Texp) data are taken from [45] over 
isochoric lines 1231.9, 1210.9, 1180.2, 1165.6, 1140.9, 1099.8, 1050.8 and 1010.7 kg/m3; 1—pcal values 
calculated with the help of FEoS (1); 2—pcal values calculated with the help of FEoS [9]. On each of the 

isochors, two experimental points corresponding to large values of the pressure are located in the single-phase 
range, the rest of experimental points are located in the metastable range.

Figure 3: Argon sound speed at 150.8 K isotherm: 1—experimental data [46]; 2—calculation by FEoS (1); 3—

calculation by FEoS [9].

Coefficients and parameters of FEoS (1) with components (2)–(4) and (7), (8) were deter-

mined on the basis of an array of experimental data [37–54] among them: Tc = 150.66 K,

pc = 4.8634 MPa, ρc = 535.1 kg/m3, R = 0.20813332 J/(g K), u0Zc = 4.54936419, u1Zc =

0.0524296231552, α = 0.11, β = 0.3255, γ = 1.239, δ = 4.806, ∆ = 0.51, m = 3, D1 =

0.52854169554602, D2 = 0.87466821897252, D3 = −7.9131735557194× 10−3 and x0 =

0.31122037639966. The values of coefficients Ci, j are presented in tables 1, 2 and 3.
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Figure 4: Relative deviations δCV = (CV,exp −CV,cal)/CV,exp100%; pcal: CV,cal corresponded to values 
calculated with the help of (1) in the single phase range; CV,exp corresponded to data [48] over isochoric line 

473.6 kg/m3; 1—CV calculated with the help of FEoS (1); CV calculated with the help of FEoS [9].

Figure 5: Relative divergence values of density δ ρ = (ρexp −ρcalc)/ρexp100% calculated as per the equations 
pre-sented in this study as compared with the experimental data [44]. Isothermal lines: 1—148.007 K; 2—149.006 

K; 3—149.598 K; 4—149.983 K; 5—150.372 K; 6—150.52 K; 7—150.579 K; 8—150.621 K.

Based on compressibility Z (10), we have calculated the thermal surface of argon (figure 1).

As one can see, FEoS (1) transmits the thermal surface of argon in the temperature range from

the saturation line and the melting line to 2300 K and it can be extrapolated by temperature up

to 17 000 K and by pressure up to 12 GPa. FEoS (1) describes the experimental (p,ρ ,T )-data

in the metastable range [45], experimental data about CV [48] and about the speed of sound

w [46] in the vicinity of the critical point with less uncertainty than FEoS NIST [9] (figures 2,

3 and 4). Note that when searching for the coefficients of FEoS (1), experimental data [45, 46]

were not used. The FEoS (1) represents experimental (p,ρ ,T )-data [44] within the range of

the experimental error (figure 5). Experimental data on CV [48, 50] are transmitted within the

experimental error (figure 6) in a wide range of state parameters including the vicinity of the

critical point.
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Figure 6: Behavior of the isochoric heat capacity of argon in a single-phase region: 1—experimental points [48] 
over the isochor of 531 kg/m3; 2—experimental points [50] over the isochor 530 kg/m3; 3—CV calculated with 

a help of the FEoS (1) over isochor 530.5 kg/m3.

4 CONCLUSIONS

On the basis of a new representation of the scaling hypothesis [34, 35] and the Berestov

equation [2], FEoS (1) was developed. This FEoS primarily works satisfactorily in a wide range

of pressures and temperatures including the critical range and the range of high temperatures

and pressures. FEoS (1) with components (2)–(4) and (7) has the properties of the virial series in

the regular part of the thermodynamic surface as well as the properties of the Berestov equation

in the critical range.

Argon FEoS (1) can be used to calculate the equilibrium properties in various technology

processes. We have analyzed properties calculated with the help of FEoS (1) in the vicinity of

the critical point. Our values significantly exceeds the accuracy of the data generated with the

help of known FeoSs and known crossover EoSs [6, 9, 12, 17].

The proposed method of constructing FEoS can be recommended for developing EoSs of

substances, which have reliable experimental data, for example, it carbon dioxide and sulfur

hexafluoride.

Calculated values of properties from the FEoS (1) to verify computer code are T = 400 K,

ρ = 1000 kg/m3, p(T,ρ) = 168974.25 kPa, CV (T,ρ) = 0.3920699 J/(g K).

Acknowledgments: The paper is based on the proceedings of the XXXIV International Con-

ference on Interaction of Intense Energy Fluxes with Matter, Elbrus, the Kabardino-Balkar Re-

public of the Russian Federation, March 1 to 6, 2019.
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