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Summary. In this paper we a derive a single parameter characterization of the value and the
optimal exercise time of the perpetual American straddle (the portfolio consisting of a put and
a call option on the same underlying asset with the same price) in the classical Black-Scholes-
Samuelson model. The parameter is the unique solution of a single non-linear equation with
one unknown variable; this is the first time that the single equation characterization has been
obtained for the perpetual American straddle. The equation is derived after multiple trans-
formations of the defining optimal stopping problem in continuous time using a combination
of classical techniques: Hamilton-Jacobi-Bellman equation, reduction to a Cauchy-Euler first
order differential equation, smooth pasting conditions, and, finally, verification theorem for op-
timal stopping problems.

1 INTRODUCTION

Pricing of derivatives in the classical Black-Scholes-Merton model of a financial market is
a classical topic in financial mathematics. Given that the stock price is modeled by a geometric
Brownian motion, pricing problems can often be formulated as problems of optimal stopping
in continuous time. Arguably the best known models involve pricing of perpetual American
options: options without expiration date. Although the financial derivatives of this kind are not
actively traded they represent an important theoretical concept and, due to their diminishing
value, a valuable first approximation of the value of American derivatives with expiration dates.
When considering these kind of problems of interest are the value function of the problem,
which gives information about the price of the derivative, as well as the optimal stopping time,
which gives information about the optimal exercise time of the derivative under consideration.

In this paper we consider the perpetual American straddle: a classical portfolio consist-
ing of a put option and a call option on the same underlying asset with the same strike price.
The pricing of the perpetual American straddle has been studied using different approaches and
tools: in [1] by applying the theory of Laplace transforms, in [5] by transforming the problem
to a “generalized parking problem”, in [6] by exploiting ”an analogy with asymmetric rebates
of double knock-out barrier options”, in [7] ”by means of the Esscher transform and the op-
tional sampling theorem”, and, more recently, by using a combination of several optimization
techniques [3] and [4]. The characterizations obtained in these papers are often cumbersome:
indeed, in all of these papers the value function and the optimal exercise time are characterized
by a solution of a non-linear system of equations consisting of (at least) two equations.
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In this note, we show that the value function and the optimal exercise time of the perpetual
American straddle can be characterized via a unique solution of a single one-variable equation;
the solution lies in the interval (0,1). We do so by using one of the classical optimal stopping
theory approaches: the Hamilton-Jacobi-Bellman (HJB) equation and the smooth-fit principle
in combination with a verification theorem. In particular, we begin with an optimal stopping
problem in continuous time and assume that it’s optimal stopping time is the first exit time of a
bounded interval. The HJB equation for the value function of the problem on the continuation
region is a partial differential equation that can be reduced to an ordinary differential equation
(the Cauchy-Euler equation), as is customary for the problems of this nature. After solving the
equation and exploiting the assumption about the continuation region we are able to explicitly
write down the form of the value function: it is a piecewise function with several unknown
parameters. As the value function is expected to be continuous and differentiable we are able to
apply what is known as smooth pasting conditions to obtain a nonlinear system of equations the
solution of which will give us the unknown parameters. Finally, after applying the verification
theorem and some theoretical considerations about the uniqueness of the solution of the system,
we reduce the system to a single equation and prove that it’s solution is unique and in the (0,1)
interval. To the best of our knowledge this is the first time that such one-equation characteriza-
tion of the value and the optimal exercise time of the perpetual American straddle is obtained.
In the next section we present our result in full detail.

2 RESULT
Let the price process S; be a a geometric Brownian motion,
dS; = aS;dt + 0S;dB;,
where a € R and ¢ € R are known constants. The American straddle yields a payoff
f(t,8) =e S, —1

when exercised at time 7, where I > 0 is the strike price and r < o is a given discount rate (the
inequality r < ¢ is a standard assumption; see for example [10]).
The value of the perpetual American straddle at time ¢ is given by

Vi =esssupEfe”""|Sc — 1], (1)
(ASHA

where 7} is a set of all stopping times T > ¢. Our goal is to find a value function v(¢,x) such
that v(z,S;) = V;, and an optimal stopping time 7* such that Vy+ = E[e™"" |Sz+ — I|]. Hamilton-
Jacobi-Bellman (HJB) equation related to this problem is:

max {f(6,%) = v(t,x), 1 (1,%) + Lv(1,2)} =0, @)
(1x)€[0, 400 xR

124



L. Obradovié

where & = ad, + %o2axx is a differential operator related to Ito’s lemma (see e.g. [8, ch.11]).
A well known approach when dealing with time-discounted optimal stopping problems is
to assume that the value function is of the form

rt

¢ (x);
this will later be confirmed using a verification theorem. The equality

vi(t,x)+ ZLv(t,x) =0

v(t,x)=e"

holds on the continuation region (due to the HIB equation). After canceling out e~ " this gives:
1
ro(x) — axe'(x) — Eozxz(p”(x) =0.

The last equation is a well known Cauchy-Euler ordinary differential equation and its solution
is

@(x) = Ax* + Bx*,
where A and B are two unknown constants and A and p are the solutions of the characteristic
equation

1
r—om— Eczm(m— 1)=0.

It can be easily verified that inequalities A > 1 and u < 0 hold.

It is known that the optimal stopping time will be the first exit time from the interval
(x1,x2) 3 I: it is optimal to exercise the put (call) option when the value of S; goes beneath
x1 (above x»). Furthermore, on the stopping region, the HIB equation implies that f = v. Thus,
we assume that the function v should be of the form:

e (I —x), 0<x<ux
v(t,x) = e_”(Ax)L + Bx*), x1<x<x 3)
e "(x—1), x> X

where A, B, x1, x; are constants chosen in a way that makes the function v differentiable (smooth
pasting conditions). In particular, we require continuity and differentiability in x; and x;.

It is already clear that, should we find such constants, the above function v(z,x) will be a
value function. Indeed, conditions of any of the well known verification theorems for the opti-
mal stopping of diffusions (e.g. ch. 3 in [9] or ch. 10 in [8]) are easily satisfied for functions
that coincide, piecewise, with (discounted) linear combinations of power functions. Further-
more, since the functions v and f coincide outside the interval (xj,x;), if v is indeed the value
function, then the optimal stopping time is:

v = inf{t > 0|S; ¢ (x1,x2)}.

Smooth pasting conditions lead to a highly non-linear system of equations. We show that it
can be reduced to a single equation:
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Theorem 1. The value process of the perpetual American Straddle V; defined in (1) satisfies the
equality V; = v(t,S;) for the function v as defined in (3) where

ul 147+
p—11+y-2
1

1— _
B:m((l—l)xl ”—f—ﬂ,xl“); X1 = Yx2

A:—((l—u)x{*’l+uxf’l); X =

and y € (0,1) is the unique number satisfying:

o 14+y* Ao l+yH

L—1149"4 A—11+4y-H @
Proof. Smooth pasting conditions, after cancelling out e, can be written as:
[ —x; =Ax} +Bx{, —x1 =AAx} +Buxy,

xy — I =Axb +Bxb, Xy =AAxA +Buxh. %)

In order to prove the theorem it is, by construction of the value function v, sufficient to prove
that unique solution of the system (5) is the one given in the formulation of the theorem. The
proof consists of reducing the system to equation (4), and proving that the solution of the latter
is unique on the interval (0, 1).

First we comment on the uniqueness of the solution of the system of equations (5). Due
to the uniqueness of the value function of the optimal stopping problems the solution of the
system above must be unique. Indeed, two different solutions of the system (5) would lead to
two functions v; and v, both of which would satisfy the verification theorem and the equation
vi1(2,S¢) = va(t,S;) would holds almost surely, which is clearly impossible.

We now turn to proving the existence. We can eliminate variables A and B in the two
equations containing x| by treating them as a two dimensional linear system. Since determinant

of that system is D = x%ﬂl (u—A) #0, A and B are uniquely determined by it. We can do the
same for the two equations containing x;. If we introduce, for notational purposes, the function
O(x;p,A) = (u—2A)~' (1 — p)x'* + ux—*, we can write the solutions of those two systems
as:
A=0(x;;1,4); B=0(xi;A,1); A= —0Q(xo; 14, A); B=—0Q(x2;4, ).
Equating the expressions for A and B we obtain the following nonlinear system with two
equations and two variables, x| and x;:

O(x1;14,A) + O(x2; t,A) =0 O(xi;A, 1)+ O(x2;A, 1) =0 (6)

Due to the nice form of the above system, we immediately see that if (x,xp) is its solution so
is (x2,x1). This means that there is a unique solution pair satisfying x; < xp, and it will be the
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unique solution that we are looking for. We introduce a variable ¥ such that x; = x;¥; since
inequality 0 < x; < x, holds, we have y € (0, 1). The right hand side of the first equation of the
system (6) can now, after some simple calculations, be written as:

Q(2y: t, A) + 0oz, A) = (1— W A1+ ) + a1 +774).

from which we obtain:
ul 14y

p—11+y-2

Xy =

Similarly, by changing x; = xo7 in Q(x1;A, 1) + Q(x2; A, 1) = 0 after multiplication with x, "

we obtain:
Al 14y H

A—114y-#
Equating the two obtained expressions for x;, after rearanging and cancelling out parameter /,
we obtain the one-dimensional equation (4), stated in the formulation of the theorem.

It remains to prove that there exists a unique solution of equation (4) in the interval (0, 1).
Let us denote the left hand side of the equation with k(7). It is obvious that function &
is continuous on (0,1) and, since A > 1 and u < 0, it is easy to check that 4(1) < 0 and
limy_,04 h(y) = +oo. We can thus conclude that a solution exists on the interval (0,1), and its
uniqueness is a consequence of the argument from the beginning of the proof.

Xy =

]

3 CONCLUSION

We have demonstrated that the perpetual American straddle, a classical and well studied
portfolio of options, can be priced and fully characterized using a unique solution of a single
non-linear equation on the unit interval. Our contribution is technical, and it’s value lies in it’s
elegance as well as the fact that the solution itself gives a direct relation between two exercise
boundaries of the American straddle. The result represents an represents a rare advancement in
a well studied field, showing that even in classical literature on derivative pricing there can be
space for contributions to the theory; the contributions are likely to be of the technical kind, as
demonstrated in this material.

As the result we presented belongs to a wide field of financial mathematics, we conclude the
paper with two comments that hopefully address the relative significance of the results within
finance and mathematics, respectively.

Curiously, the equation the solution of which is the single parameter that characterizes the
optimal exercise time and the price of the perpetual American straddle does not depend on the
strike price /. This technical curiosity might have a deeper economic interpretation within the
field of finance; this however lies beyond the mathematical aspects studied in this work.
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From the perspective of the mathematics of the theory of optimal stopping in continuous
time, the result we presented gives rise to a natural question for future research: which op-
timal stopping problems with bounded continuation regions can be characterized by a single
parameter? The solution we presented exploited the “symmetry” of the function f and one can
naturally assume that one needs to formalize this condition in the most general terms in order
to prove the general version of the result presented here.
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