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Summary: Substance behavior under high-intensive radiative exposure is considered. The 
thermomechanical and electromagnetic processes, which high-current electron beam initiates 
in a solid barrier, are modeled in their relationship. In addition to electron transport equation 
mathematical model includes Maxwell equations with convective current and Euler equations 
with the Lorentz force and Joule heating. It allows to investigate the complex radiation effect 
of electron beam. The expressions for the Lorentz force density dealing with ionized 
substance and Joule heating in substance due to the electromagnetic field are constructed. 
Conservative finite difference approximation is applied to the description of the 
electromagnetic field impact on ionized substance. The preliminary results of the 
thermomechanical and electromagnetic effects interaction are represented. 

1. INTRODUCTION 

Investigation of substance properties in extreme conditions is an actual problem. The 
results are important for new materials design, protection problems, etc. Laser radiation and 
electron beams create the extreme conditions in laboratory experiments. Lasers are used for 
surface excitation of investigated barrier while electron beams are applicable when volumetric 
energy release is needed [1]. 

The experiments with powerful sources of radiation are rather expensive. Measuring 
equipment cannot provide full quantitative data for detailed description of the interaction 
between radiation and substance. Therefore, mathematical modelling becomes an effective 
support for experimental investigation [2-6].  

Radiative, thermomechanical and electromagnetic effects accompany the interaction 
between an electron beam and a solid barrier. All of them arise from electron transport and 
scattering. The beam interacts with the barrier through elastic scattering, bremsstrahlung, 
impact ionization and excitation. [7-9]. It is impact ionization that is the main channel of 
energy transfer from electrons to the barrier. The differential ionization cross section is 
inversely proportional to the square of the energy transfer magnitude. So, a lot of low energy 
secondary electrons cross to so-called ionization spectrum [10-11]. They degrade to 
equilibrium with energy transfer to scattering medium [12]. Excess charge carriers cause 
radiation-induced conductivity, energy transfer leads to medium heating [13]. Heating causes 
substance evaporation, pressure increase and shock wave generation [14]. Nonuniform 
thermal and mechanical fields arouse thermomechanical effects: deformation, melting, 
evaporation, etc [14]. 
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Electron movement creates current density which generates the electromagnetic field. The 
nonuniform current density causes bulk electric charge [15]. Electromagnetic field is a reason 
for electromagnetic effects: electric current of conductivity, electric breakdown, etc. 

Such collision process as bremsstrahlung should be considered separately [9]. Most of the 
existing high-current accelerators generate electrons with the energy less than 10 MeV. 
Corresponding bremsstrahlung photons receive energy near 2 MeV [6]. The free path of such 
photon exceeds the electron’s one by two orders of magnitude. As a result, the size of ionized 
region exceeds the electron free path sufficiently. Bremsstrahlung photons experience 
Compton and coherent scattering, photo absorption, produce electron-positron pairs [16]. 
Consequently, bremsstrahlung photons turn into the flux of charged particles conversely.  

Radiative, thermomechanical and electromagnetic fields affect each other. Density 
redistribution during the dumping of the mechanic stresses changes the scattering properties 
of substance. Ionization during radiative heating enhances the conductivity, which reduces the 
electric field. The Electric field and the bulk charge create the ponderomotive force. It moves 
substance along with the pressure gradient. Joule heating of conductive substance in the 
electric field causes additional energy release. 

Keldysh Institute researchers have developed a program package REMP (Radiation and 
ElectroMagnetic Pulse) for mathematical modelling of physical effects which accompany the 
interaction of electrons and photons with complex technical objects. It includes computational 
modules and the user interface, connected by unified data communication protocol. The 
classic transport equation describes free electrons scattering. The Monte-Carlo method 
provides means for the direct modelling of particle collisions. The classic kinetic equations 
describe particle propagation in vacuum and gases. The Maxwell equations describe the 
electromagnetic field evolution. The mentioned equations form the arsenal to consider the 
transport processes, the electromagnetic field, both external and self-consistent, and their 
interaction. The computational modules are connected through a program script with the 
hydrodynamic code MARPLE-3D [17]. It enables to consider the dynamics of substance 
exposed to radiation. The quantum kinetic equations for conductivity electrons and holes of 
valence band describe the radiation-induced conductivity of semiconductors. The free electron 
energy release serves as a source in it. The collision integral in the quantum equation 
describes scattering on phonons of crystal lattice. The statistical particles method solves 
numerically both the quantum and the classic kinetic equations. The method combines 
stochastic scattering simulation with the equations of motion in electromagnetic field which 
are solved between collisions [18]. The program package is operated at the heterogeneous 
cluster К-100.  

This article is devoted to the script development for simulation of interacting 
thermomechanical and electromagnetic fields of radiation genesis. 

2. PROBLEM STATEMENT 
The following kinetic equation describes fast electrons transport and scattering:  

[ ]1div( ) div , ( ) ( )te
e p e e e ph e ph

f f e f f с d f
t c

σ υ σ −

∂ ⎡ ⎤⎛ ⎞+ + + + = +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦
∫х E х B p' p,p' p'  

(1)

- ( ) ' ( ) ( ) ' ( ) ,e e e p e p ed f d f Qσ υ σ υ−+ + +∫ ∫p' p,p' p' p' p,p' p'  
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where ( ), ,e ef f t= r p , ( ), ,p pf f t= r p , ( ), ,ph phf f t= r p  are the distribution functions of 
electrons, positrons and photons respectively in the phase space of coordinates r  and 
momentum p , х  is particle velocity, с is the speed of light, e  is an electron charge, 

( ),t=E E r , ( ),t=B B r  are the electric field strength and the magnetic induction, p' is the 
particle momentum before collision, divp  is the divergence operator in momentum space, 

t
eσ is the total cross section of electron adsorption, ph eσ − , e eσ − , p eσ −  are the differential cross 

sections of photon, electron, and positron scattering with electron generation, 
( ), ,e eQ Q t= r p  is the electron source. 

The following kinetic equation describes positrons and photons which are generated in 
cascade processes: 

[ ]1div( ) div , ( ) ( )p t
p p p p p ph p ph

f
f e f f с d f

t c
σ υ σ −

∂ ⎡ ⎤⎛ ⎞+ − + + = +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦
∫х E х B p' p,p' p'  

(2)

( ) ' ( ),p p pd fσ υ−+∫ p' p,p' p'  

-div( ) ( ) ( ) ( ) ' ( )ph t
e ph e ph ph ph e ph e

f
c f c f c d f d f

t
σ σ σ υ−

∂
+ + = + +

∂ ∫ ∫Щ p' p,p' p' p' p,p' p'
(3)

( ) ' ( ),p ph pd fσ υ−+∫ p' p,p' p'  

where Щ is the unit vector of photon velocity, t
phσ  is the total cross section of photon 

adsorption, t
pσ is the total cross section of positron adsorption, ph pσ − , p pσ −  are the 

differential cross sections of photon and positron scattering with positron generation, ph phσ − , 

e phσ − , p phσ −  are the differential cross sections of photon, electron, and positron scattering 
with photon generation. 

The equations (1), (2), (3) are considered in the space of finitary generalized functions 
[19]. The details of the methods of equation solving are given in [18, 20, 21]. 

Let’s consider the following mathematical constructions: 

where ( )pε  – energy of particle, infinitely differentiable function ( ),W ′− Δr r , 3′∈r r , 

0Δ >  satisfies conditions ( )3
, 1W d′ ′− Δ =∫

r

r r r , ( ) ( ) ( )30
lim , , ,d W ϕ ϕ
Δ→

′ ′− Δ =∫
r

r r r r p r p  

for every infinitely differentiable function from the pivot space. The following relations 
connect the differential scattering cross sections in (4), (5), (6) with summands of collision 
integrals in the equations (1), (2), (3): 

( ) ( ) ( ) ( ) ( ), , , , ( ) ' , , ,e t
e e e eQ t d d p W f t d f tε ε σ υ σ υ⎡ ⎤′ ′ ′ ′ ′≡ − Δ −⎣ ⎦∫ ∫ ∫r p r r r r p p' p,p' r p  (4)

( ) ( ) ( ) ( ) ( ), , , , ( ) ' , , ,p t
p p p pQ t d d p W f t d f tε ε σ υ σ υ⎡ ⎤′ ′ ′ ′ ′≡ − Δ −⎣ ⎦∫ ∫ ∫r p r r r r p p' p,p' r p  (5)

( ) ( ) ( ) ( ) ( ), , , , ( ) ' , , ,ph t
ph ph ph phQ t d d p W f t d f tε ε σ υ σ υ⎡ ⎤′ ′ ′ ′ ′≡ − Δ −⎣ ⎦∫ ∫ ∫r p r r r r p p' p,p' r p  (6)
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The expressions (4), (5), (6) determine the energy power density which electrons, positrons 
and photons transmit to scattering medium. The total energy release is: 

Let’s consider constructions: 

where m is electron mass and the vector pQ  has components p
iQ , 1,2,3i = . 

The formulae (8), (9) express charge and external electric current density. The formulae 
(10), (11) express momentum and mass transfer to scattering medium. The represented 
definitions of the model attributes provide model applicability for heavy particle fluxes. 

Energy transfer to the barrier causes heating, melting or evaporation. Every process takes 
place in actual cases. There are regions of barrier where energy release exceeds, matches or is 
less than the heat of sublimation. Different equations describe this situations. But it is 
impossible to extract domains of applicability for this equations a priori. We use ideal 
hydrodynamic Euler equations [22] for all cases. Complex tabular equations of state describe 
detailed properties of substance [23]. The following Euler equations are classic: 

where ρ is the density of barrier substance, p is pressure, T is temperature, u is internal 
energy, v  is the specific velocity of barrier substance with components iv , 1,2,3i = . The 
Summation convention is applied. 

( ) ( ) ( ),e e e e phσ σ σ− −= +p,p' p,p' p,p'  
( ) ( ) ( ) ( ),p p e p ph p pσ σ σ σ− − −= + +p,p' p,p' p,p' p,p'  

( ) ( ) ( ) ( ).ph ph e ph ph ph pσ σ σ σ− − −= + +p,p' p,p' p,p' p,p'  

e p phQ Q Q Qε
ε ε ε= + + . (7)

( ) ( ) ( ) ( ), , , , , ,ext e pt e d d W f t f t′ ′ ′ ′⎡ ⎤≡ − Δ −⎣ ⎦∫ ∫j r p r х r r r p r p , (8)

( ) ( ) ( ) ( ), , , , , ,ext e pq t e d d W f t f t′ ′ ′ ′⎡ ⎤≡ − Δ −⎣ ⎦∫ ∫r p r r r r p r p , (9)

( ) ( ) ( ) ( ), , , , ( ) ' , ,p t
e e e et e d d W f t d f tσ υ σ υ⎡′ ′ ′ ′ ′≡ − Δ − +⎣∫ ∫ ∫Q r p r p r r r p p' p,p' r p  

(10)( ) ( ), , ( ) ' , ,t
p p p pf t d f tσ υ σ υ′ ′ ′+ − +∫r p p' p,p' r p

( ) ( ), , ( ) ' , ,t
ph ph ph phf t d f tσ υ σ υ ⎤′ ′ ′+ − ⎦∫r p p' p,p' r p , 

( ) ( ) ( ) ( ), , , , ( ) ' , ,t
e e e eQ t d d mW f t d f tρ σ υ σ υ⎡′ ′ ′ ′ ′≡ − Δ − +⎣∫ ∫ ∫r p r r r r p p' p,p' r p  

(11)( ) ( ), , ( ) ' , , ,t
p p p pf t d f tσ υ σ υ ⎤′ ′ ′+ − ⎦∫r p p' p,p' r p  

div Q
t

ρρ ρ∂
+ =

∂
v , (12)

( ) p
i i k ik i

k

v v v p Q
t x
ρ ρ δ∂ ∂

+ + =
∂ ∂

, (13)

2 2

+div
2 2
v vu u p Q

t
ερ ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂
+ + + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

v v , (14)
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Electrons interaction with the barrier is accompanied by generation of electric charge 
( ),extq t r  and current ( ),ext tj r densities. Electric current, in its turn, generates electromagnetic 

field. It creates ponderomotive force which sets ionized substance in motion. So, balances of 
momentum (13) and energy (14) in ionized substance should be transformed in the 
corresponding relation for the system including substance and electromagnetic field [24]. The 
extrinsic current work extj E  should be subtracted from the external energy gain. A new source 
of momentum emerges is the Lorentz force [ ]ext extq с− − ×E j B  acting on beam electrons. 
The following Euler equations describe ionized substance and the field: 

where for isotropic substance    

[ ] [ ]( )1 1 1 1' ' ' ' ,
4 2 2ik i k i k ik k ii k

T E D H B v v
c

δ
π
⎛ ⎞⎛ ⎞= + − + − × + ×⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

E'D' H'B' E' H' E' H'  (18)

vectors E , P , D , H , M , B  with components iE , iP , iD , iH , iM , iB  represent the 
electric field strength, the polarization, the electric displacement, the magnetic field strength, 
the magnetization and the magnetic induction, respectively, S  is the Poynting vector, ig  is 
the electromagnetic field momentum density, strp  is the striction pressure. 

[ ]1
4 cπ

= ×g E H , (19)

[ ]
4
c
π

= ×S E H . (20)

Vectors E' , P' , D' , H' , M' , B'  with components 'iE , 'iP , 'iD , 'iH , 'iM , 'iB  represent 
the electric field strength, the polarization, the electric displacement, the magnetic field 
strength, the magnetization and the magnetic induction  in the substance's rest frame.  

c
⎡ ⎤= + ×⎢ ⎥⎣ ⎦

vD' D H' , (21)

c
⎡ ⎤= + ×⎢ ⎥⎣ ⎦

vE' E B' , (22)

div mQ
t
ρ ρ∂
+ =

∂
v , (15)

( ) ( )( ) [ ]1 ,p
i i i k str ik ik i ext i ext i

k

v g v v p p T Q q E
t x c
ρ ρ δ∂ ∂ ⎛ ⎞+ = − + − − + − + ×⎜ ⎟∂ ∂ ⎝ ⎠

j B  
(16)

 

[ ]
2 2 2

2 8 8 ext
v E Bu Q

t c
ερ

π π
⎛ ⎞⎛ ⎞∂

+ + + − + × = − −⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

vM'B M' E' j E

2

div
2 2 2str
v u p pρ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− + + + − − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

E' B'v S v P' E M' B , 
(17)
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c
⎡ ⎤= − ×⎢ ⎥⎣ ⎦

vP' P M' , (23)

c
⎡ ⎤= − ×⎢ ⎥⎣ ⎦

vH' З D' , (24)

c
⎡ ⎤= − ×⎢ ⎥⎣ ⎦

vB' B E' , (25)

c
⎡ ⎤= + ×⎢ ⎥⎣ ⎦

vM' M P' , (26)

We propose the following connections between E'  and D' , B'  and H' : 

ε=D' E' , (27)

μ=B' H' , (28)

where the dielectric permittivity ε  and permeability μ  depend on thermodynamic 
parameters only. This dependence causes the striction pressure strp  [24]: 

2 2' ' .
8 8str
E Hp ε μρ ρ
π ρ π ρ

∂ ∂
= +

∂ ∂
 (29)

Thermodynamic relations [24] determine the following consequence for dielectrics. 
Specific internal energy can be represented as a sum of components. One of them 0u  is 
independent from electric field: 

2 2

0
' '

2 2 8 8
E Hu u T T

T T
ε μ

ρ ρ πρ πρ
∂ ∂

= + + + +
∂ ∂

E'P' B'M' . (30)

Let’s consider Maxwell equations [25] for electromagnetic field in continuous media: 

( )*1 4rot ext q
c t c

π∂
= + + +

∂
DH j j v , (31)

1rot
c t
∂

= −
∂
BE , (32)

( )div 4 extq qπ= +D , (33)

where q is charge density in ionized substance, *j  is the current density of conductivity 
electrons. In the frame of Cauchy problem for equations (31-33) Coulomb law (33) is 
equivalent to charge continuity equation: 

( ) ( )*div 0ext
ext

q q
q

t
∂ +

+ + + =
∂

j j v . 

The law of electromagnetic field energy conservation follows from Maxwell equations 
(31-33): 
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2 2

div
8 8
E B

t t tπ π
⎛ ⎞∂ ∂ ∂

+ + − = − −⎜ ⎟∂ ∂ ∂⎝ ⎠

P BE M S jE , (34)

where j  is the total current density: 
*

extq= + +j j v j . (35)

Let’s multiply Ошибка! Источник ссылки не найден. by iv  and sum over index i : 

( ) [ ] ( )( )1 .p
i i i i i i ext i ext i i k str ik iki

k

v v g v Q v q E v v v p p T
t c x
ρ ρ δ∂ ∂⎛ ⎞+ = − + × − + − −⎜ ⎟∂ ∂⎝ ⎠

j B  (36)

After term rearranging in (36): 

[ ]
2 2

2 2 1
2 2k k i ext i ext i

k k

v vv v v v v q E
t t x x c
ρ ρ ρ ρ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ⎛ ⎞+ = − − − + × −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠
j B  

(37)
( )( ) .p i

i i k str ik ik i i i
k

gv v v p p T v Q v
x t

ρ δ ∂∂
− + − − + −

∂ ∂
 

The equation for kinetic energy balance follows from (37) and (15): 

( )( )
2 2

2 2
i

i i k str ik ik k i
k k

gv vv v v p p T v v
t x x t
ρ ρ δ ρ

⎛ ⎞ ⎛ ⎞ ∂∂ ∂ ∂
= − + − − − − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 
(38)

[ ]1 .p
i ext i ext i ii

v q E v Q
c

⎛ ⎞− + × +⎜ ⎟
⎝ ⎠

j B  

Relations (17), (30), (34), (38) determine the law of internal energy conservation. One can 
use it instead of (17): 

( ) ( )
2 2

0
' ' div

8 8
p

str i i ext
d E Hu T T p p Q v Q
dt T T

εε μρ ζ
π π

⎛ ⎞∂ ∂
+ + = − − + + − + − +⎜ ⎟∂ ∂⎝ ⎠

v j j E  
(39)

[ ]1 ,i
i i ik i ext i ext i

k

gv v T v q E
t x c

∂ ∂ ⎛ ⎞+ − + + ×⎜ ⎟∂ ∂ ⎝ ⎠
j B  

where d
dt t

∂
= + ∇
∂

v  is the total derivative,  

[ ] ( ) ( )( )( )div
2 2t c

ζ ∂ ⎛ ⎞= − × − − + − + − +⎜ ⎟∂ ⎝ ⎠

v E'P' B'M'M'B M' E' v P' E E' M' B B'

t t
∂ ∂

+ −
∂ ∂
P BE M . 

(40)

The derivation of the equation (39) is founded on the following assumption. 
Thermodynamic parameters determine dielectric permittivity uniquely. It means that only 
locally equilibrium and reversible processes change permittivity. Substance dynamics 
equations (16), (17) are formulated as laws of conservation. Therefore equations validity is 
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connected with the applicability of the thermodynamic relations for substance under 
consideration (for example (30)). Equations (15), (16), (17) hold true if the relaxation times of 
the processes, which are connected with permittivity change, are small in comparison with the 
characteristic macroscopic time. The law of electromagnetic energy conservation (34) doesn’t 
change, so the equation (39) holds true.  

One can simplify (39) with the help of momentum conservation law [24]: 

[ ]1i
ik ext i ext ii

k

gT q E F
x t c

∂∂
− = + × +

∂ ∂
j B  (41)

where  

( ) [ ] [ ]( )1 1
i i ext i

i i i

F qE
c x x c x

∂ ∂ ∂
= + − × + + + × − × +⎡ ⎤⎣ ⎦ ∂ ∂ ∂

E' B' vj j B P' M' P' B' M' E'  (42)

[ ] [ ]( ) ( )1
2i i

i

d
c dt x
ρ ∂

+ × − × − +
∂

p' B' m' E' P'E' M'B'  

 

ρ=p' P'  (43)

ρ=m' M'  (44)

The next relation follows from (39) and (41): 

( ) ( )
2 2

0
' ' div

8 8
p

str i i ext
d E Hu T T p p Q v Q
dt T T

εε μρ ζ
π π

⎛ ⎞∂ ∂
+ + = − − + + − + − −⎜ ⎟∂ ∂⎝ ⎠

v j j E vF  (45)

Using the following relations 

( )( )div ,i
i

dv
r t dt

ρ∂ ∂
= + −

∂ ∂
E' P' p'P' P'E' v E' E'  (46)

( )( )div ,i
i

dv
r t dt

ρ∂ ∂
= + −

∂ ∂
B' M' m'M' M'B' v B' B'  (47)

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )2divi
i

v v
r t
∂ ∂

× − × = × − × + × − × −
∂ ∂

v P' B' M' E' P' B' M' E' v P' B' M' E'  (48)

[ ] [ ]( ) ,d
dt

ρ− × − ×v p' B' m' E'  

and neglecting terms of the order of 2 2cv ,  we obtain: 

( )div
2 2 t t t

⎛ ⎞⎛ ⎞ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + − + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

E' B' P BvF P' E M' B v E M M'B  
(49)

[ ]( )1 d dq
c t c dt dt

ρ ρ∂ ⎡ ⎤− × + + × − −⎣ ⎦∂
*v p' m'v M' E' Ev j B E' B'  

Substituting vF from (49) into (39), one can obtain: 
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2
* *

0 ( )div
8

p
str

d Eu T p p Q
dt T c

εερ
π

⎛ ⎞∂ ⎡ ⎤+ = − − + − + − × −⎜ ⎟ ⎣ ⎦∂⎝ ⎠

vv vQ j E j B  

(50)( ) ( )div .
2 2 2 2

d d
t dt dt

ρ ρ
⎛ ⎞∂ ⎛ ⎞− + − + + +⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

E'P' M'B'E'P' M'B' p' m'v v E' B'  

Using (27), (28), one can simplify (50): 
2

* *
0 ( )div

8
p

str
d Eu T p p Q
dt T c

εερ
π

⎛ ⎞∂ ⎡ ⎤+ = − − + − + − × +⎜ ⎟ ⎣ ⎦∂⎝ ⎠

vv vQ j E j B  
(51)

2 2' ' .
8 8
E d H d

dt dt
ε μ

π π
+ +  

One can obtain another form of momentum conservation law for the system of 
substance and field instead of (16) with the help of (32): 

( ) [ ] [ ]( )*1 1'i
str i i

i i

dv p p qE
dt x c c x

ρ ∂ ∂⎡ ⎤= − − + + × + × − × −⎣ ⎦∂ ∂
vj B' P' B' M' E'  

(52)
[ ] [ ]( )1 ' ' .

2 i i
i i i i

d
x x x x c dt

ρ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ − + − + × − ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

E P' B' M'P' E M' B' p' B' m' E'  

The expression for current density of conductivity electrons completes equations (22-24): 

*

c c
σ σ σ⎛ ⎞ ⎛ ⎞= = + × = + ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
v vj E' E B' E B , (53)

where σ  is total thermal and radiative conductivity.  
One can obtain the relation for thermal conductivity from the Wiedemann-Francis law. It 

connects electric and heat conductivity. The electron heat conductivity λ  is considered in 
approximation [23]: 

34 3ac lλ θ= , (54)

where 2 3 3/15a cπ= . 
2 2 3 [см]S Hl λ λ θ= + , (55)

where Sλ  and Hλ  are the thermal conductivity coefficients for ideal nondegenerate and 
tightly degenerate plasma:  

5/2
3 1

1

1,17 10S
eff

e
Z L
θλ −= ⋅ , (56)

3/2
4 2

2

3,10 10 F
H

eff

e
Z L
θθλ −= ⋅ . (57)
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The factors 1e  and 2e  provide correction for plasma nonideality. Atomic units are used for 
substance θ  and Fermi Fθ  temperatures. The Coulomb logarithms of electron-ion collisions 
can be calculated in the next approximations: 

( ) ( )2/3 1/2
2 0.5ln 2 3 1.5 3effL Z Гπ⎡ ⎤= +⎢ ⎥⎣ ⎦

, (58)

( )

21/2

0
1 2

0

0.5ln 1 9 max 1,
3 1

eff effZ Z Z
L

Г Г Z

⎛ ⎞⎛ ⎞⎧ ⎫⎡ ⎤⎪ ⎪⎜ ⎟⎜ ⎟= + ⎨ ⎬⎢ ⎥⎜ ⎟⎜ ⎟+⎣ ⎦⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠⎝ ⎠

, (59)

where Г is the parameter of nonideality: 

0

0

1 1min ,eff

F

Z Z
Г

r θ θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (60)

The next approximation is used for effective charge: 

{ }0 0max 1, 0.5 /effZ Z Z= + , (61)

where 0Z  is ion average charge in accordance with the Hartree-Fock-Slater model [23].  
Equations (1), (2), (3), (15), (16) (or (52)), (17) (or (39), or (51)), (31), (32), (33), (53) 

coupled with the tabular equations of state and homogeneous initial conditions make up the 
Cauchy problem for kinetic, hydrodynamic and Maxwell equations. Problem is posed for the 
investigation of interaction between electron beam and polarizable and magnetizable 
substance.  

The main correlations between electromagnetic and thermomechanical effects can be 
estimated without considering polarization and magnetization when cv . In addition, both 
of permittivities should not change visible at scales of electron stopping path and 
characteristic hydrodynamic time. 

The following simplified equations should be considered for nonpolarized and 
nonmagnetized substance instead of (16), (17): 

( ) grad p
lp

t
ρ ∂⎛ ⎞+ ∇ = − + +⎜ ⎟∂⎝ ⎠

v v v F Q , (62)

2 2

0 0div
2 2
v vu u p A Q

t
ερ ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂
+ = − + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

v v , (63)

where lF  is the Lorentz force affecting the ionized substance, A  is the power of the specific 
total electromagnetic field work.  

[ ]1 1
l q

c c
⎛ ⎞ ⎡ ⎤= + × + ×⎜ ⎟ ⎣ ⎦⎝ ⎠

*F E v B j B , (64)

( )extA q= + = −*Ev j E j j E . (65)

Let’s define the energy HA  which field spends on substance heating: 
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( )1
H lA A

c
⎡ ⎤= − = − ×⎣ ⎦

* *F v j E v j B . (66)

Relations (64), (65), (66) determine the electromagnetic field influence on ionized 
substance. Substituting (53) to (64) and (66) one can receive the expressions for Lorentz force 
and the heating power density: 

[ ] [ ] ( )( )2
2

1
l q B

c c c
σ σ⎛ ⎞= + × + × + −⎜ ⎟

⎝ ⎠
F E v B E B v B vB , (67)

[ ]( ) ( )( )22 2 2
22 .HA E v B

c c
σ σσ= − × − −v E B vB  (68)

Total medium heating by the field, electrons, positrons and photons is equal to: 
p

Н НA A Qε= + − vQ . (69)

The Coulomb law (33) enables to express the Lorentz force through the electromagnetic 
field components only: 

[ ] [ ] ( )( )2
2

1 div
4l extq B

c c c
σ σ

π
⎛ ⎞⎛ ⎞= + × − + × + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

DF E v B E B v B vB . (70)

3. NUMERICAL ALGORITHMS 
The numerical algorithm for hydrodynamic equation is based on the conservative finite-

difference scheme of the increased order of accuracy [25]. It is the Kolgan scheme which is 
modified and generalized for 3D unstructured grids. The predictor-corrector scheme integrates 
grid equations with respect to time variable. Since the scheme is explicit, the Courant–
Friedrichs–Lewy condition should be implemented. The finite-difference scheme for Maxwell 
equations is represented in [20]. It is also explicit; it provides the second order of accuracy on 
homogeneous Cartesian grid, implements the discrete analogue of the energy conservation 
law. 

Let's consider the scheme for the system of electromagnetic and hydrodynamic equations. 
It is necessary to construct finite-difference analogues for Lorentz force (70) and heating (68) 
which provide conservativeness of the general scheme.  

Following relations [20] determine computational grid for Maxwell equations (31), (32), 
(33), (53) with respect to variable x: 

Computational grids with respect to variables y, z are introduced in a similar manner. Grid 
parameters provide the localization of coefficients discontinuity on surfaces ix x= , jy y= , 

kz z= . The coefficients values are defined at the grid points with half-integer spatial indexes. 
These points coincide with centers of rectangular parallelepipeds which are organized by 

1i i ix x+ = + Δ  , 0,..., 1xi N= −  , 0 minx x=  , maxxNx x=  , 

1/2 1( ) / 2i i ix x x+ += +  , 0,..., 1xi N= −  , 1/2 0x x− = , 1/2x xN Nx x+ = , 

1/2 1/2i i ix xδ + −= −  , 0,..., xi N= , 0 0 / 2δ = Δ  , 0 0 / 2δ = Δ , 1 / 2
x xN Nδ −= Δ . 
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intersection of planes 1,i ix x x += , 1,j jy y y += , 1,k kz z z += . The current density and electric 
field components are defined in the centers of corresponding parallel parallelepiped edges. 
The magnetic field components are defined in the centers of those parallelepiped faces, to 
which they are normal. The convective current and medium moving are not under 
consideration in [20]. 

Time grid consists of points nt  with intervals 1/2 1/2;n n nt tτ + −= −  2,..., 1.tn N= −  The Grid 

functions xE , yE , zE  are defined in the integer moments of time tn, ,  ,  x y zH H H  are 
defined at the half-integer points 1/2nt + . 

Let’s consider grid analogous for Maxwell equations (31), (32) [20]: 

The following designations will be used. Symbol ns  signifies function value s  on time 
layer with number n . Symbol 1/2, ,i j ks +  signifies the following weighted value the of grid 
function u : 

1 1
1/2, , 1/2, 1/2, 1/2 2 2

j k
i j k i j k

j k

s u
δ δ
− −

+ + − −

Δ Δ
= +  

1 1
1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2 .

2 2 2 2 2 2
j j jk k k

i j k i j k i j k
j k j k j k

s s s
δ δ δ δ δ δ
− −

+ − + + + + + + −

Δ Δ ΔΔ Δ Δ
+ + +  

( ) ( )1/2 1/2 1/2 1/2
1/2, 1/2, 1/2, 1/2, 1/2, , 1/2 1/2, , 1/2

z n z n y n y n
i j k i j k j i j k i j k kH H y H H zδ δ+ + + +
+ + + − + + + −− − − =  

( )1
1/2, ,1/2, , 1/2, , 1/2

4 .
x

x n x n
i j ki j k i j k nD D c I

c
πτ+

++ + += − +  

( ) ( )1/2 1/2 1/2 1/2
, 1/2, 1/2 , 1/2, 1/2 1/2, 1/2, 1/2, 1/2,
x n x n z n z n
i j k i j k k i j k i j k iH H z H H xδ δ+ + + +

+ + + − + + − +− − − =  

( )1
, 1/2,, 1/2, , 1/2, 1/2

4 .
y

y n y n
i j ki j k i j k nD D c I

c
πτ+

++ + += − +  

( ) ( )1/2 1/2 1/2 1/2
1/2, , 1/2 1/2, , 1/2 , 1/2, 1/2 , 1/2, 1/2

y n y n xn xn
i j k i j k i i j k i j k jH H x H H yδ δ+ + + +
+ + − + + + − +− − − =  

( )1
, , 1/2, , 1/2 , , 1/2 1/2

4 .
z

z n z n
i j ki j k i j k nD D c I

c
πτ+

++ + += − +  

( ) ( )1 1 1 1
, 1/2, 1 , 1/2, , 1, 1/2 , , 1/2
y n y n z n z n

i j k i j k k i j k i j k jE E z E E y+ + + +
+ + + + + +− Δ − − Δ =  

( )3/2 1/2
, 1/2, 1/2 , 1/2, 1/2 1 .xn xn

i j k i j k nH H cτ+ +
+ + + + += −  

( ) ( )1 1 1 1
1, , 1/2 , , 1/2 1/2, , 1 1/2, ,

z n z n xn xn
i j k i j k i i j k i j k kE E x E E z+ + + +
+ + + + + +− Δ − − Δ =  

( )3/2 1/2
1/2, , 1/2 1/2, , 1/2 1 .yn yn

i j k i j k nH H cτ+ +
+ + + + += −  

( ) ( )1 1 1 1
1/2, 1, 1/2, , 1, 1/2, , 1/2,

xn xn y n yn
i j k i j k j i j k i j k iE E y E E x+ + + +
+ + + + + +− Δ − − Δ =  

( )3/2 1/2
1/2, 1/2, 1/2, 1/2, 1 .z n z n

i j k i j k nH H cτ+ +
+ + + + += −  
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The induction vector is determined as 1/2, , 1/2, , 1/2, ,
x x
i j k i j k i j kD Eε+ + += , the total current density is 

denoted as 1/2, , 1/2, , 1/2, , 1/2, ,
x x x

i j k i j k i j k i j kI E Jσ+ + + += + , where 1/2, ,
x
i j kJ +  is the extrinsic current density. 

The following finite-difference law of electromagnetic field energy conservation [20] takes 
place in computational domain: 

( )1 1(E ,H ) W (E ,H ) 0fd n n fd n n fd fd fd fd
nW Q A K Sτ+ + − + + + + = , (71)

where W (E , H )fd n n  is the quadratic form composed from values of the electric and the 
magnetic fields strength components at time layer with number n. This quadratic form is a 
grid analogue of electromagnetic field energy. Finite-difference analogues of all current 
works express values fdA , fdQ  and fdK . The value fdS  expresses energy flow through the 
boundary domain. 

The expression for finite-difference work of the extrinsic current in computational domain 
is: 

11

1/2, j,k 1/2, j,k , j 1/2,k , j 1/2,k
0 0 0 0 0 0

4 4
y yx xz zN NN NN N

fd x x y y
i i i j k i i i j k

i j k i j k
A J E J Eπ δ δ π δ δ

−−

+ + + +
= = = = = =

= Δ + Δ +∑∑∑ ∑∑∑  (72)

1

, j,k 1/2 , j,k 1/2
0 0 0

4 ,
yx zNN N

z z
i i i j k

i j k
J Eπ δ δ

−

+ +
= = =

+ Δ∑∑∑  

where 1/2, ,
x
i j kE + , 1/2, ,

x
i j kJ +  are the electric field strength and the current density at the point 

1/2 , ,i j kx x y y z z+= = = . The total current work is expressed analogously. 
The finite-difference work of the extrinsic current in the cell with the center at the point 

1/2 1/2, ,i jx x y y+ += =  1/2kz z +=  is equal to: 

( 1/2, j,k 1/2, j,k 1/2, j 1,k 1/2, j 1,k 1/2, j,k 1 1/2, j,k 1 1/2, j 1,k 1 1/2, j 1,k 1
fd x x x x x x x x

cell i j k i i i i i i i iA J E J E J E J Eπ + + + + + + + + + + + + + + + += Δ Δ Δ + + + +  

, j 1/2,k , j 1/2,k 1, j 1/2,k 1, j 1/2,k , j 1/2,k 1 , j 1/2,k 1 1, j 1/2,k 1 1, j 1/2,k 1
y y y y y y y y

i i i i i i i iJ E J E J E J E+ + + + + + + + + + + + + + + ++ + + + +  (73)

), j,k 1/2 , j,k 1/2 1, j,k 1/2 1, j,k 1/2 , j 1,k 1/2 , j 1,k 1/2 1, j 1,k 1/2 1, j 1,k 1/2 .z z z z z z z z
i i i i i i i iJ E J E J E J E+ + + + + + + + + + + + + + + ++ + + +  

The finite-difference work of the conductive current in the computational domain is а sum 
of cell works in edges: 

( 1/2, , 1/2, j,k 1/2, j 1,k 1/2, j 1,k 1/2, j,k 1 1/2, j,k 1
fd x x x x x x

cell i j k c i j k i c i i c i iQ J E J E J Eπ + + + + + + + + + += Δ Δ Δ + + +  

(74)
1/2, j 1,k 1 1/2, j 1,k 1 , j 1/2,k , j 1/2,k 1, j 1/2,k 1, j 1/2,k , j 1/2,k 1 , j 1/2,k 1

x x y y y y y y
c i i c i i c i i c i iJ E J E J E J E+ + + + + + + + + + + + + + + ++ + + + +  

1, j 1/2,k 1 1, j 1/2,k 1 , j,k 1/2 , j,k 1/2 1, j,k 1/2 1, j,k 1/2 , j 1,k 1/2 , j 1,k 1/2
y y z z z z z z

c i i c i i c i i c i iJ E J E J E J E+ + + + + + + + + + + + + + + ++ + + + +  

)1, j 1,k 1/2 1, j 1,k 1/2 ,z z
c i iJ E+ + + + + ++  

where: 
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1/2, , 1/2, , 1/2, , 1/2, , 1/2, 1/2, 1/2
1 xx x

c i j k i j k i j k i j k i j kJ E
c

σ+ + + + + + +
⎛ ⎞⎡ ⎤= + ×⎜ ⎟⎣ ⎦⎝ ⎠

v B . (75)

Let the substance velocity in the hydrodynamic finite-difference scheme be defined in cell 
centers. The charge density is defined in cell centers too. We define convective current 
density in edge center as: 

(1/2, , 1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2 1
1

4
x x x
i j k i j k i j k j k i j k i j k j k

j k

J q v q v
δ δ+ + + + + + + + − + + − + −= Δ Δ + Δ Δ +  

(76)

) 1/2, ,1/2, 1/2, 1/2 1/2, 1/2, 1/2 1 1/2, 1/2, 1/2 1/2, 1/2, 1/2 1 1 ,
x

x x
i j ki j k i j k j k i j k i j k j kq v q v J ++ + − + + − − + − − + − − − −+ Δ Δ + Δ Δ =  

where 1/2, , 1/2, 1/2, 1/2 1/2, 1/2, 1/2, ,x x
i j k i j k i j kJ q v+ + + + + + +  are the x-component of convective current density, 

the charge density and the substance speed in cell center. 
The work fdK  и fd

cellK  of the convective current, expressed by (76), is defined by analogy 
with the extrinsic one (72), (73).  

If dielectric permittivity is constant, only convective and conductive currents fulfils the 
energy exchange between substance and field in accordance with (34), (65).  

Let’s define specific Lorentz force component for the cell with center at the point 
1/2 1/2 1/2, ,i j kx x y y z z+ + += = =  according to expression (67). It is necessary to interpolate values 

of the electromagnetic field strength components in the cell center. We shall calculate the 
magnetic field as an average value with respect to all cell faces with weight iδ . The Electric 
field will be calculated with respect to all cell edges with weight i jδ δ : 

1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2
1l

i i i i iq
c+ + + + + + + + + + + + + + +

⎛ ⎞⎡ ⎤= + × +⎜ ⎟⎣ ⎦⎝ ⎠
F E v B  

(77)

1/2, j 1/2,k 1/2
1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2

i
i ic

σ + + +
+ + + + + +⎡ ⎤+ × +⎣ ⎦E B  

1/2, j 1/2,k 1/2 2
1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/22

i
i iB

c
σ + + +

+ + + + + ++ −v  

( )1/2, j 1/2,k 1/2
1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/22 ,i

i i ic
σ + + +

+ + + + + + + + +− B v B  

where 1/2, j 1/2,k 1/2
l
i+ + +F  is the finite-different analogue of the specific Lorentz force. 

The work of convective and conductive currents doesn’t appear in the algorithm explicitly. 
So, it is necessary to construct the finite-difference analogue of work, which is expended on 
heating only, in other words, on change of the internal energy in cell. To do this, let’s 
multiply Lorentz force by hydrodynamic velocity scalarly. Then let’s subtract the result from 
the total work of convective and conductive currents:  

1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2
Н fd fd
i cell cell i i iA Q K q+ + + + + + + + + + + += − − −E v  

( )1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2i i ic
σ

+ + + + + + + + +⎡ ⎤− × −⎣ ⎦v E B  (78)

92



K.K. Inozemtseva, M.B. Markov, F.N. Voronin. 

( )( )22 2
1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/2 1/2, j 1/2,k 1/22 .i i i iv B

c
σ

+ + + + + + + + + + + +− − v B  

Finally, it’s necessary to express charge density in field components. The definition of total 
charge density at the grid point follows from the finite-different scheme [20]: 

1/2, j,k 1/2, j,k , j 1/2,k , j 1/2,k , j,k 1/2 , j,k 1/2
, ,

1
4

i i i i i itot
i j k

i j k

D D D D D D
q

π δ δ δ
+ − + − + −⎛ ⎞− − −

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

, (79)

where 1/2, ,i j kD +  is the component of electric displacement. It is defined in the center of cell 
edge. The edge is parallel to the component. We define the charge density as a difference 
between total charge averaged with all cell points with weight i j kδ δ δ  and the charge density 

of fast electrons extq : 

(1/2, 1/2, 1/2 , , 1, , 1 , 1, 1
1/2, 1/2, 1/2

1
8

tot tot tot
i j k i j k i j k i j k i j k i j k i j k

i j k

q q q q
V

δ δ δ δ δ δ δ δ δ+ + + + + + +
+ + +

= + + +  

, , 1 1 1, 1, 1 1 1, , 1 1 1 , 1, 1 1 1
tot tot tot tot

i j k i j k i j k i j k i j k i j k i j k i j kq q q qδ δ δ δ δ δ δ δ δ δ δ δ+ + + + + + + + + + + + + ++ + + + +  (80)

)1, 1, 1 1 1 1 1, 1, 1 1 1 1 1/2, 1/2, 1/2 ,tot tot ext
i j k i j k i j k i j k i j kq q qδ δ δ δ δ δ+ + + + + + + + + + + + + + ++ + −  

where 1/2, 1/2, 1/2i j kV + + +  is cell volume: 

(1/2, 1/2, 1/2 1 1 1
1
8i j k i j k i j k i j k i j kV δ δ δ δ δ δ δ δ δ δ δ δ+ + + + + += + + + +  

(81)
)1 1 1 1 1 1 1 1 1 .i j k i j k i j k i j kδ δ δ δ δ δ δ δ δ δ δ δ+ + + + + + + + ++ + + +  

Let’s substitute (80) in (77), (78). In this way, we express the Lorentz force and substitute 
heating in terms of electromagnetic field and hydrodynamic velocity. They can be determined 
by solving Maxwell and hydrodynamic equations. 

Formulae (77) and (78) express the finite-difference momentum and the internal energy. 
They are transmitted in the hydrodynamic finite-difference scheme as a source. It provides the 
conservativeness of the finite-difference scheme in general. 

Now let’s consider the finite-difference hydrodynamic equations. Grid functions in these 
equations are attributed to cell centers and are described in [25]. The transition to the next time 
level is performed in two stages. At the first stage pressure force is considered. The intermediate 
values of the substance velocity v  and the specific energy density w  are calculated: 

1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2

1/2, 1/2, 1/2

1n n n n
i j k i j k i j k i j k

n i j kV
ρ ρ

τ
+ + + + + + + + + + + +

+ + +

−
= − ⋅

v v
 

(82)

( )1, 1/2, 1/2 , 1/2, 1/2 1/2, 1, 1/2 1/2, , 1/2 1/2, 1/2, 1 1/2, 1/2, ,i j k i j k i j k i j k i j k i j kF F F F F F+ + + + + + + + + + + + + + +⋅ − + − + −  

1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2

1/2, 1/2, 1/2

1n n n n
i j k i j k i j k i j k

n i j k

w w
V

ρ ρ
τ

+ + + + + + + + + + + +

+ + +

−
= − ⋅  (83)

93



K.K. Inozemtseva, M.B. Markov, F.N. Voronin. 

( )1, 1/2, 1/2 , 1/2, 1/2 1/2, 1, 1/2 1/2, , 1/2 1/2, 1/2, 1 1/2, 1/2, ,i j k i j k i j k i j k i j k i j kA A A A A A+ + + + + + + + + + + + + + +⋅ − + − + −  

where 1/2, 1/2, 1/2i j kV + + +  is the volume of the cell with the center 1/ 2, 1/ 2, 1/ 2i j k+ + + , F  is 
the force, acting on a face, A  is the work of the force F . 

2
1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2 2i j k i j k i j kw u v+ + + + + + + + += + , (84)

where 1/2, 1/2, 1/2i j ku + + +  is the internal substance energy. 
Force and work are expressed in terms of velocity and pressure in the following way: 

P= ⋅F S , (85)

( )A P= ⋅S v , (86)

where S  is the area of the oriented face, which is directed to the cell with next number, P  is 
the pressure in the cell center. Velocity v  is defined in the face center.  

Convective transport is considered at the second stage. The Final values 1nρ + , 1n+v , 1nw +  
on the upper time layer are calculated: 

(
1

1/2, 1/2, 1/2 1/2, 1/2, 1/2
1, 1/2, 1/2

1/2, 1/2, 1/2

1n n
i j k i j k

i j k
n i j k

F
V

ρρ ρ
τ

+
+ + + + + +

+ + +
+ + +

−
= − −  

(87)
), 1/2, 1/2 1/2, 1, 1/2 1/2, , 1/2 1/2, 1/2, 1 1/2, 1/2, ,i j k i j k i j k i j k i j kF F F F Fρ ρ ρ ρ ρ

+ + + + + + + + + + + +− + − + −  

1 1
1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2

1/2, 1/2, 1/2

1n n n n
i j k i j k i j k i j k

n i j kV
ρ ρ

τ

+ +
+ + + + + + + + + + + +

+ + +

−
= − ×

v v
 

(88)
( )1, 1/2, 1/2 , 1/2, 1/2 1/2, 1, 1/2 1/2, , 1/2 1/2, 1/2, 1 1/2, 1/2, ,i j k i j k i j k i j k i j k i j k

ρ ρ ρ ρ ρ ρ
+ + + + + + + + + + + + + + +× − + − + −v v v v v vF F F F F F  

1 1
1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2

1/2, 1/2, 1/2

1n n n n
i j k i j k i j k i j k

n i j k

w w
V

ρ ρ
τ

+ +
+ + + + + + + + + + + +

+ + +

−
= − ×  

(89)
( )1, 1/2, 1/2 , 1/2, 1/2 1/2, 1, 1/2 1/2, , 1/2 1/2, 1/2, 1 1/2, 1/2, ,w w w w w w

i j k i j k i j k i j k i j k i j kA A A A A Aρ ρ ρ ρ ρ ρ
+ + + + + + + + + + + + + + +× − + − + −  

where F ρ , ρvF , wF ρ  are the convective flows of ρ , ρ v , wρ  through the corresponding 
face:  

( )( )upv upvF ρ ρ ρ= ⋅ + ΔS v , ( )( ) ,upv upvF ρ ρ ρ= ⋅ + Δv S v v v  
(90)

( )( )w
upv upvF w wρ ρ ρ= ⋅ + ΔS v . 

Index upv  means, that the value is defined for two cells which adjoin to face from which the 
velocity v  is directed. The symbol Δ  means an amendment to corresponding value, which 
provides monotony and increased accuracy order. Let cell with index 1/ 2, 1/ 2, 1/ 2i j k+ + +  
is windward for one with the index 1/ 2, 1/ 2,i j k+ + . Then the amendment will be equal to 
minimum modulus of two values:  
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1/2, 1/2, 1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1min[ , ]upw i j k i j k i j k i j kρ ρ ρ ρ ρ+ + + + + + + + + + +Δ = − − . (91)

The amendment for ρ v  and wρ  is calculated analogously. If differences in (91) have 
different signs, amendment is equal to zero.  

The amendments to velocity and the internal energy conditioned by the Lorentz force and 
energy of substance heated by the electromagnetic field: 

1
1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2

l n
i j k i j k n i j kτ ρ +
+ + + + + + + + +Δ =v F , (92)

1
1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2

Н n
i j k i j k n i j ku A τ ρ +
+ + + + + + + + +Δ = . (93)

Both the electrodynamic and the hydrodynamic finite-difference schemes have the second 
order of accuracy. The general finite-difference scheme has the second order of accuracy too. 

4. TEST CALCULATION 
The effectiveness of the algorithm has been investigated in test calculation. Conditions 

were chosen in accordance with the experimental installation. The beam of electrons with 
energy of 200 keV falls normally on the epoxy resin barrier. The pulse duration was 150 ns, 
the electron fluence 163 10еN = ⋅  1/cm2, the beam cross-sectional area was 1 cm2. Such 
experiments with electron beams are conducted at the National Research Center “Kurchatov 
Institute” on the accelerator CALAMARY [26].  

Full 3D modelling of electron transport, substance dynamics and the electromagnetic field 
was carried out on cluster K-100 at Keldysh Institute of Applied Mathematics. 

The energy release, current density and electromagnetic field distributions were calculated 
by REMP package. 

Figure 1 represents the dependence of energy release on the coordinate normal to barrier 
surface. The coordinate origin is located on the irradiated barrier surface in the center of the 
beam cross section. The energy release reaches the value of 50 kJ/cm3 and exceeds 
sublimation heat to a depth of 0.02 cm. Beyond this distance the energy release decreases 
sharply. One can see the regions of evaporation, melting and heating. 
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Fig. 1: Energy release as a function of normal coordinate  

Figure 2 represents the dependence of the electric field strength on the time variable at a 
depth of 0.01 cm in barrier. The thermal and the radiation conductivities were calculated in 
the framework of the approximations considered in Section 2. 

 
Fig. 2: The electric field strength (ESU CGS) as a function of time variable  

The calculated distributions of energy release, current density and electromagnetic fields 
have been used for the simulation of thermomechanical effects by the MARPLE package. No 
perceptible dependence of their parameters on the electric field has been detected. 

The simulation has brought to light the high sensitivity of results to the value of 
conductivity. It should be noted, that all models in Chapter 2 are founded on classic 
fundamental equations. Only both of conductivities are considered within the framework of 
the empirical model. It involves an inadmissible computational load required for the modeling 
of ionization spectrum degradation within the framework of kinetic theory. The finiteness of 
the degradation time leads to the delay in the development of conductivity relative to the 
electric current. As a result, electric field increases. 

The next computer experiment was carried out with consideration of the fact that one can 
establish the majorant estimate of electric field equating conductivity to zero. 

Figure 3 represents the dependence of the electric field strength on the normal coordinate 
for nonconducting barrier.  
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Fig. 3: The electric field strength (ESU CGS) as a function of the normal coordinate in nonconducting barrier 

It’s obvious that the electric field with the strength of the order of 107 SGSE can’t be 
observed in a real experiment. This value exceeds significantly dielectric rigidity of all known 
substances. Nevertheless, let’s consider the influence of such field on barrier substance 
dynamics.  

Figure 4 represents the dependence of the following values on normal coordinate. The red 
lines show the dependence of substance density. The blue lines show the dependence of 
specified speed normal velocity component. Hereinafter solid lines refer to the calculation 
experiment in which electric field is taken into account. Dashed lines refer to the calculation 
experiment where the field influence is neglected. One can see, that electric field density peak 
value decreases from 2.5 to 2.3 g/cm3 and the specified speed increases from 7 106 to 9 106 
cm/s. 

 

Fig. 4: The substance density and normal component of specified velocity as a function of normal coordinate. 
Solid lines – with electric field considering, dashed lines – with electric field neglecting 
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Fig. 5: The pressure and temperature as a function of normal coordinate. Solid lines – with electric field 
considering, dashed lines – with electric field neglected 

Figure 5 shows the pressure peak value decrease from 0.08×1011 to 0.07×1011 Pa. The 
temperature increased from 0.05 to 0.1 keV.  

The electric field of unrealistically large amplitude changed the thermodynamic parameters 
only by tens of percent. 

5. CONCLUSIONS 
Classis kinetic equations for electron, photon and positron distribution functions in 

coordinate-momentum phase space describe the radiation transport in barrier substance. 
Collision integrals model the medium impact ionization and excitation by electrons, elastic 
scattering and bremsstrahlung. Compton and coherent scattering, photoabsorption and pair 
production of bremsstrahlung photons complement the set of physical effects under 
consideration. Maxwell equations describe external and self-consistent electromagnetic fields. 
Euler equations model the substance dynamics under the influence of the electromagnetic 
field and energy release. Hydrodynamic consideration unites the computational domain 
regions of heating, melting and evaporation within the framework of the common 
thermodynamical mathematical model.  

The kinetic equations are solved in the space of finite generalized functions. The power of 
energy release and electric current density are defined as a linear functional in this space. It 
enables the particle-in-cell method usage for kinetic equations numerical simulation [18] 
within the scope of REMP package. 

Previously developed fully conservative finite difference schemes for Maxwell and 
hydrodynamic equations have formed the basis of numerical algorithm. The Finite-difference 
analogues of Joule heating, the Lorentz force and the convective current provide the 
implementation of finite difference energy conservation law for the system of the united 
electromagnetic field and ionized substance. 

The interaction between thermodynamic and electromagnetic fields is investigated in the 
simulation of experiment with the electron beam of CALAMARY accelerator.  

The energy release of the high-current electron is comparable with the Lorentz force in the 
nonconductive medium. The radiative and thermal conductivity of the barrier changes the 
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result of simulation dramatically. The energy release in such media repeatedly exceeds the 
Lorentz force in nonconductive medium. The investigation showed that the conductivity 
mathematical model should be the main subject of further researches. 

The authors are grateful to V. A. Gasilov and O. G. Olkhovskaya for the opportunity to use 
the package MARPLE3D and useful advice. 
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