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Summary. The main difficulty for path integral Monte Carlo studies of Fermi systems results

from the requirement of antisymmetrization of the density matrix and is known in literature as

the sign problem. To overcome this issue the new numerical version of the Wigner approach to

quantum mechanics for treatment thermodynamic properties of degenerate systems of fermions

has been developed. The new path integral representation of quantum Wigner function in the

phase space has been obtained for canonical ensemble. Explicit analytical expression of the

Wigner function accounting for Fermi statistical effects by effective pair pseudopotential has

been proposed. Derived pseudopotential depends on coordinates, momenta and degeneracy pa-

rameter of fermions and takes into account Pauli blocking of fermions in phase space. The new

quantum Monte Carlo method for calculations of average values of arbitrary quantum operators

has been proposed. To test the developed approach calculations of the momentum distribution

function of the degenerate ideal system of Fermi particles has been carried out in a good agree-

ment with analytical Fermi distributions. Generalization of this approach for studies influence of

interparticle interaction on momentum distribution functions of strongly coupled Fermi system

is in progress.

1 INTRODUCTION

Over the last decades significant progress has been observed in theoretical studies of thermo-

dynamic properties of strongly correlated fermions at non-zero temperatures, which is mainly

conditioned by the application of numerical simulations (see review [1]). The reason for this

success is the possibility of an explicit representation of the density matrix in the form of the

Wiener path integrals [2] and making use of the Monte Carlo method for further calculations.

The main difficulty for path integral Monte Carlo (PIMC) studies of Fermi systems results from

the requirement of antisymmetrization of the density matrix [2]. As result all thermodynamic

quantities are presented as the sum of alternating sign terms related to even and odd permuta-

tions and are equal to the small difference of two large numbers, which are the sums of positive

and negative terms. The numerical calculation in this case is severely hampered. This difficulty

is known in the literature as the sign problem.
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To overcome this issue some approaches have been developed [1, 3–9]. For example ap-

proaches [3,5,6] get ideal Fermi gas with very good accuracy. For interacting fermions the first

results [5] have been obtained for the high densities for 33 particles and were now extrapolated

to the thermodynamic limit very accurately in [6].

The fixed-node method [1,7–9] is very widely known. However the main result of work [10]

is that the fixed-node method can not reproduce even the well known ideal fermion density ma-

trix and should be considered as an uncontrolled empirical approach for treatment thermody-

namics of fermions. The analogous contradictions have been analytically obtained many years

ago in [11] from virial decomposition of the many fermion fixed-node density matrix.

In this work to treat the sign problem the new numerical version of the Wigner approach to

quantum mechanics allowing studies of thermodynamic properties of the degenerate systems of

fermions has been developed. The new path integral representation of quantum Wigner function

in the phase space has been obtained for canonical ensemble. Explicit analytical expression of

the Wigner function accounting for Fermi statistical effects by effective pair pseudopotential

has been proposed. Derived pseudopotential depends on coordinates, momenta and degener-

acy parameter of fermions and takes into account Pauli blocking of fermions in phase space.

The new quantum Monte Carlo method for calculations of average values of arbitrary quantum

operators has been proposed. To test the developed approach calculations of the momentum

distribution functions of the ideal system of Fermi particles has been carried out. Calculated by

Monte Carlo method the momentum distributions and pair correlation functions for degenerate

ideal fermions are in a good agreement with analytical distributions. Generalization of this ap-

proach for studies influence of interparticle interaction on momentum distribution functions of

strongly coupled Fermi system is in progress. First results show appearance of long quantum

‘tails’ in the Fermi distribution functions.

2 WIGNER FUNCTION FOR CANONICAL ENSEMBLE

For one particle in 1D case the average value of arbitrary quantum operator Â can be written

as its Weyl’s symbol A(p,x), averaged over phase space with the Wigner function W (p,x;β )

[12, 13]:

〈Â〉=
∫

dpdx

2π h̄
A(p,x)W (p,x;β ), (1)

where the Weyl’s symbol of operator Â is:

A(p,x) =
∫

dξ

2π h̄
e−i〈ξ |p〉/h̄〈x−ξ/2|Â|x+ξ/2〉. (2)
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Weyl’s symbols for usual operators like p̂, x̂, p̂2, x̂2, Ĥ, Ĥ2 etc. can be easily calculated directly

from definition (2). The Wigner function of many particle system in canonical ensemble is

defined as a Fourier transform of the off–diagonal matrix element of the density matrix operator

in coordinate representation:

W (p,x;β ) = Z(β )−1
∫

dξ ei〈p|ξ 〉/h̄〈x−ξ/2|e−β Ĥ|x+ξ/2〉. (3)

Here ρ = exp(−β Ĥ) is the density matrix operator of a quantum system of particles with the

Hamiltonian Ĥ = K̂ +Û equal to the sum of kinetic K̂ and potential energy Û operators, while

β = 1/kBT , Z(β ) is partition function.

There are well known difficulties in derivation of exact explicit analytical expression for

Wigner function as operators of kinetic and potential energy in Hamiltonian do not commutate.

To overcome this obstacle let us represent Wigner function in the form of path integral like

in the well known case of the partition function. As example let us consider equilibrium a 3D

two-component mass asymmetric electron–hole mixture consisting of Ne electrons and Nh holes

(Nh = Ne = N) [14]. Here Z(β ) is defined as:

Z(Ne,Nh,V ;β ) =
1

Ne!Nh!
∑
σ

∫

V

dxρ(x,σ ;β ), (4)

where ρ(x,σ ;β ) denotes the diagonal matrix elements of the density operator ρ̂ = e−β Ĥ . In

equation (4), x = {xe,xh} and σ = {σe,σh} are the spatial coordinates in units of thermal length

and spin degrees of freedom of the electrons and holes, i.e. xa = {x1,a . . .xl,a . . .xNa,a} and σa =

{σ1,a . . .σt,a . . .σNa,a}, λa =
√

2π h̄β
ma

is the thermal wave length, l, t = 1, . . . ,Na with a = e,h.

Of course, the density matrix elements of interacting quantum systems is not known (partic-

ularly for low temperatures and high densities), but it can be constructed using a path integral

approach [2, 15] based on the operator identity e−β Ĥ = e−εĤ · e−εĤ . . .e−εĤ, where ε = β/M,

which allows us to rewrite the integral in equation (4) as

∑
σ

∫

dx(0) ρ(x(0),σ ;β ) =
∫

dx(0) . . .dx(m) . . .dx(M−1)ρ(1) ·ρ(2) . . .ρ(M−1)×

∑
σ

∑
Pe

∑
Ph

(±1)κPe+κPh S (σ , P̂eP̂hσ ′) P̂eP̂hρ(M)
∣

∣

x(M)=x(0),σ ′=σ
. (5)

In equation (5) the index m = 0, . . . ,M − 1 labels the off–diagonal high-temperature density

matrices ρ(m) ≡ ρ
(

x(m),x(m+1);ε
)

= 〈x(m)|e−εĤ|x(m+1)〉. With the error of order 1/M2 arising

from neglecting commutator ε2/2 [K,U ] in e−εĤ ≈ e−εK̂e−εÛe−ε2/2[K,U] . . . each high temper-

ature factor can be presented as 〈x(m)|e−εĤ|x(m+1)〉 ≈ 〈x(m)|e−εK̂|x(m+1)〉〈x(m)|e−εÛ|x(m)〉. In
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the limit M → ∞ the error of the whole product of high temperature factors is equal to zero

(∝ 1/M) and this approach gives exact path integral representation of the partition function.

The spin gives rise to the spin part of the density matrix (S ) with exchange effects accounted

for by the permutation operators P̂e and P̂h acting on the electron and hole coordinates x(M) and

spin projections σ ′. The sum is over all permutations with parity κPe
and κPh

. So thermodynamic

values are equal to very small difference between large (of order N!/2) positive and negative

contributions giving by the even and odd permutations. The problem of accurate calculation of

this difference is the well known sign problem for degenerate Fermi systems. The aim of this

work is to develop simple and accurate approach for calculation this difference.

3 EXCHANGE EFFECTS IN PAIR APPROXIMATION

To explain the basic ideas of our approach is enough to consider the simple system of ideal

fermions (electrons and holes), so further Û ≡ 0. The hamiltonian of the system (Ĥ = K̂ =

K̂e + K̂h) contains kinetic energy of electrons K̂e and holes K̂h respectively. Due to the commu-

tativity of these operators the path integral representation of density matrix (5) is exact at any

finite number M. For our purpose it is enough to consider the sum over permutations in pair

approximation at M = 1 (see [16]):

∑
σ

∑
Pe

∑
Ph

(±1)κPe+κPh S (σ , P̂eP̂hσ ′
a) P̂eP̂hρ

∣

∣

x1=x(0),σ ′=σ

= ∑
σe

∑
Pe

(±1)κPeS (σe, P̂eσ ′
e)ρe

∣

∣

x1
e=x

(0)
e ,σ ′

e=σe

×∑
σh

∑
Ph

(±1)κPh S (σh, P̂hσ ′
h)ρh

∣

∣

x1
h
=x

(0)
h

,σ ′
h
=σh

= ∑
σe

{

1−∑
l<t

f 2
e;lt + ∑

l,t,c

fe;lt fe;lc fe;tc − . . .

}

×∑
σh

{

1−∑
l<t

f 2
h;lt + ∑

l,t,c

fh;lt fh;lc fh;tc − . . .

}

≈

≈ ∑
σe

∏
l<t

(1− f 2
e;lt)∑

σh

∏
l<t

(1− f 2
h;lt) = ∑

σ

exp(−β ∑
l<t

ṽe
lt)exp(−β ∑

l<t

ṽh
lt), (6)

where

fa;lt = exp

(

−
π |x

(0)
l,a − x

(0)
t,a |

2

λ 2
a

)

,

ṽa
lt =−kT ln(1− fa;lt fa;tl) =−kT ln(1−δσl,aσt,a exp

(

−
2π |x

(0)
l,a − x

(0)
t,a |

2

λ 2
a

)

)

(7)
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is exchange potential [16]. This formula shows that the first corrections accounting for the

antisymmetrization of the density matrix result in the endowing particles by the pair exchange

potential ṽa
lt . Below to take into account exchange effects in Wigner functions we are going to

use analogous pair potential depending on the phase space variables.

4 PATH INTEGRAL REPRESENTATION OF WIGNER FUNCTION

Antisymmetrized Wigner function can be written in the form:

W (p,x;β ) =
1

Z(β )Ne!Nh!
∑
σ

∑
Pe

∑
Ph

(±1)κPe+κPh S (σ , P̂eP̂hσ ′)
∣

∣

σ ′=σ

×

∫

dξ ei〈ξ |p〉〈x−ξ/2|
M−1

∏
m=0

e−εK̂m|P̂eP̂h(x+ξ/2)〉. (8)

Now replacing intermediate variables of integration x(m) in (8) (see (5)) for any permutation

PePh:

x
(m)
e = (Pexe − xe)

m

M
+ xe +q

(m)
e −

(M−m)ξe

2M
+

mPeξe

2M
,

x
(m)
h

= (Phxh − xh)
m

M
+ xh +q

(m)
h

−
(M−m)ξh

2M
+

mPhξh

2M
, (9)

we obtain

W (p,x;β ) =
C(M)

Z(β )Ne!Nh!
∑
σ

∑
Pe

∑
Ph

(±1)κPe+κPh S (σ , P̂eP̂hσ ′)
∣

∣

σ ′=σ

×
∫

dξ

∫

dq(1) . . .dq(M−1) exp

{

−π
〈ξ |PePh +E|ξ 〉

2M
+ i〈ξ |p〉−π

|PePhx−x|2

M

−
M−1

∑
m=0

[

π |q(m)−q(m+1)|2
]

}

, (10)

where angle brackets in 〈p|ξ 〉 mean the scalar product of vectors |p〉 and |ξ 〉, E is unit matrix,

while presenting permutation matrix PePh is equal to unit matrix with appropriately transposed

columns. Here and further we imply that momentum and coordinate are dimensionless variables

like pl,aλ̃a/h̄ and xl,a/λ̃a, where λ̃a =
√

2π h̄β
maM

. Here constant C(M) as will be shown further is

canceled in calculations of average values of operators. As a result, we have a new represen-

tation of Wigner function for canonical ensemble in the finite difference form of path integral.

Let us note that integration here relates to the integration over the Wiener measure of all closed

trajectories {q(0), . . . ,q(M−1)}, which start and end at q(0) = q(M) = x. In fact, a particle is pre-
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sented by the closed trajectory with characteristic size of order λa =
√

2π h̄β
ma

in coordinate space.

This is manifestation of the uncertainty principle.

Then the Wigner function can be written in the following form:

W (p,x;β ) =
C(M)

Z(β )Ne!Nh!
∑
σ

∑
Pe

∑
Ph

(±1)κPe+κPh S (σ , P̂eP̂hσ ′)
∣

∣

σ ′=σ

×exp

{

−π
|PePhx− x|2

M

}

∫

dq(1) . . .dq(M−1) exp

{

−
M−1

∑
m=0

[

π |q(m)−q(m+1)|2
]

}

×
∫

dξ exp

{

−π
〈ξ |PePh +E|ξ 〉

2M
+ i

〈

ξ

∣

∣

∣

∣

∣

p

〉}

. (11)

In this paper we are going to allow for the exchange effects in the pair approximation by

effective pseudopotental like have been discussed above (see (6)). So in this approximation

Wigner function can be written as:

W (p,x;β )≈
C(M)

Z(β )Ne!Nh!

∫

dq(1) . . .dq(M−1)

×exp

{

−
M−1

∑
m=0

[

π |qm−qm+1|
2

]

}

exp

{

−
M

4π
|p|2

}

×∑
σe

{

1−∑
l<t

δσl,eσt,e exp(−2π
|xl,e − xt,e|

2

M
δ

(

(pl,e− pt,e)
√

M

2π

)

}

×∑
σh

{

1−∑
l<t

δσl,hσt,h exp(−2π
|xl,h − xt,h|

2

M
)δ

(

(pl,h− pt,h)
√

M

2π

)

}

. (12)

The main idea of deriving expression (4) can be explained on example of two electrons in

1D space. For two electrons the sum over permutations consist of two terms related to identical

permutation (matrix P is equal to unit matrix E) and non identical permutation (matrix P is equal

to matrix E with transposed columns). To do integration in (4) over ξ let us analyze eigenvalues

of matrix P+E. For idetical permutation the eigenvalues are equal to each other and are equal

to two, while the eigenvalues of matrix P+E related to non identical permutation are equal to

zero and two.

Integration over ξ for identical permutation is trivial, while for non identical permutation

matrix P+ E before integration have to be presented in the form diagonal matrix with zero

and two as the diagonal elements. Then replacing variables for each pair (l, t) we can obtain

expression (4).

To obtain the final expression we have to approximate delta-function in (4) by the standard
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Gaussian exponent with small parameter α:

W (p,x;β )≈
C(M)

Z(β )Ne!Nh!

∫

dq(1) . . .dq(M−1) exp

{

−
M−1

∑
m=0

[

π |q(m)−q(m+1)|2
]

}

×exp

{

−
M

4π
|p|2

}

∑
σ

exp(−β ∑
l<t

ve
lt)exp(−β ∑

l<t

vh
lt), (13)

where

va
lt ≈−kT ln

{

1−δσl,aσt,a exp

(

−2π
|xl,a− xt,a|

2

M

)
√

M

2πα
exp

(

−π
M|pl,a− pt,a|

2

(2πα)2

)

}

.

Note that the expression (4) contains explicitly term related the classical Maxwell distribution.

The others terms account for the influence of exchange interaction on the momentum distri-

bution function. In the limit of small α the rescaling p by factor
√

M
2πα regularizes integration

over momenta in (1) and allows to use simplified version of effective pair pseudopotential (π is

included in small α2):

va
lt ≈ −kT ln

{

1−δσl,aσt,a exp

(

−
2π |xl,a − xt,a|

2

λ 2
a

)

exp

(

−
|(pl,a − pt,a)λa|

2

(2π h̄)2α2

)

}

.

Momenta and coordinates are written here in natural units (λ 2
a = 2π h̄2β

ma
).

5 AVERAGE VALUES OF QUANTUM OPERATORS

For calculation of average values of quantum operators 〈Â〉 we are going to use the Monte

Carlo method (MC) [17, 18]. To do this we have to use expression (4) presenting the discrete

form of path integrals. As a result we obtain final expressions for MC calculations in the fol-

lowing form:

〈Â〉=
〈A(p,x)〉w

〈1〉w
. (14)

Here brackets
〈

g(p,x,q1, . . . ,qM−1)
〉

w
denote averaging of any function g(p,x,q1, . . . ,qM−1)

with positive weight w(p,x,q1, . . . ,qM−1):

〈g(p,x,q1, . . . ,qM−1)〉w

=

∫

dpdx

∫

dq1 . . .dqM−1g(p,x,q1, . . . ,qM−1)w(p,x,q1, . . . ,qM−1), (15)
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while

w(p,x,q1, . . . ,qM−1) = exp

{

−
M−1

∑
m=0

[

π |q(m)−q(m+1)|2
]

}

exp

{

−
M

4π

∣

∣

∣

∣

∣

p

∣

∣

∣

∣

∣

2
)

}

×∑
σ

exp(−β ∑
l<t

ve
lt)exp(−β ∑

l<t

vh
lt). (16)

Note that denominator in (14) is equal to nominator with A(p,x) = 1, so C(M) in (4) is canceled.

Calculations of the average values of quantum operators depending only on coordinates of

particles is more convenient and reasonable to carry out in configurational space by standard

path integral Monte Karlo method (PIMC). Within considered above approach it can be done if

we change the following function:

w̃(x,q(1), . . . ,q(M−1)) = exp

{

−
M−1

∑
m=0

[

π |q(m)−q(m+1)|2
]

}

×∑
σ

exp(−β ∑
l<t

ṽe
lt)exp(−β ∑

l<t

ṽh
lt), (17)

where ṽa
lt is defined by equation (7),

〈g(x,q(1), . . . ,q(M−1))〉w̃

=

∫

dx

∫

dq(1) . . .dq(M−1)g(x,q(1), . . . ,q(M−1))w̃(x,q(1), . . . ,q(M−1)) (18)

and

〈 ˜̂A〉=

〈

Ã(x) · h̃(x,q(1), . . . ,q(M−1))
〉

w̃

〈h̃(x,q(1), . . . ,q(M−1))〉w̃

. (19)

6 RESULTS OF NUMERICAL CALCULATIONS

We define momentum distribution functions and pair correlation functions for holes (a = h)

and electrons (a = e) by the following expressions:

wa(|p|) =

〈

δ (|p1,a|− |p|) ·h(p,x,q(1), . . . ,q(M−1))
〉

w

〈h(p,x,q(1), . . . ,q(M−1))〉w

,

gab(r) =

〈

δ (|x1,a − x1,b|− r) · h̃(x,q(1), . . . ,q(M−1))
〉

w̃

〈h̃(x,q(1), . . . ,q(M−1))〉w̃

, (20)

where δ is delta function, a and b are types of the particles.
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To test the developed approach we have carried out calculations of the path integral rep-

resentation of Wigner function in the form (4). To extent the region of applicability of pair

approximation we have used the small parameter α2 as adjustable function of the universal

degeneracy parameter of ideal fermions nλ 3, namely α2
a = 0.00505+ 0.056nλ 3

a . Calculations

have been done for two hundred particles each presented by twenty beads. Results have been

obtained by averaging-out over one million particle configurations. To simplify calculations we

fix the number of electrons and holes with the same spin projection equal to Ne/2 and Nh/2

respectively.

For ideal electron–hole plasma figure 1 shows the momentum distributions wa(|pa|),(a =

e,h) and pair correlation functions gab(|r|),(a,b = e,h) scaled by ratio of the Plank constant

to the electron thermal wavelength ( h̄
λe

) and Bohr radius (aB) respectively. In left column of

figure 1 results of Monte Carlo calculations for electrons and holes are presented by lines 1

and 3, while lines 2 and 4 shows ideal Fermi distributions. Presented distribution functions

are normalized to one. Let us note that holes is these calculations are two times heavier than

electrons, so the related parameters of degeneracy is 23/2 times smaller. As it follows from the

analysis of figure 1 agreement of PIMC calculations and analytical Fermi distribution are good

enough up to parameter of degeneracy equal to nλ 3
e = 15.

It necessary to stress that one of the reason of increasing discrepancy at large degeneracy of

femions is limitation on available computing power allowing calculations with several hundred

particles in Monte Carlo cell. When parameter of degeneracy is approaching 20 the thermal

electron wave length is of order Monte Carlo cell size and influence finite number of particles

and periodic boundary conditions becomes significant as was tested by our calculations.

Right column of figure 1 presents results of Monte Carlo calculations of pair correlation

functions gab(|r|) (a,b = e,h). Influence of Fermi repulsion at distance less than thermal wave

length is evident enough. At the same time the electron—hole pair correlation functions are

identically equal to one as exchange interaction between particle of different type is missing.

Presented results have been obtained in pair exchange approximation described by intro-

duced above the effective pair pseudopotentials. Figure 2 presents contour plots of exchange pair

pseudopotentials for parameter of degeneracy equal to 5.6. Momenta and coordinates axises are

scaled by the electron thermal wave length with Plank constant and factor ten for momentum.

As before holes are two times heavier than electrons. As it follows from analysis of figure 1 the

Pauli blocking of fermions in phase space accounting for by these exchange pseudopotentials

provides agreement of PIMC calculations and analytical Fermi distribution in wide ranges of

fermion degeneracy and fermion momenta, where decay of the distribution functions is about

of five orders of magnitude.
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Figure 1: The momentum distribution functions wa(|p|) (left panels) and pair correlation functions gab(|r|) (a,b =
e,h) (right panels) for ideal electron—hole plasma. Left panels: lines 1, 3 show PIMC distributions wa(|p|) scaled

by ratio of Plank constant to the electron thermal wavelength ( h̄
λe

), while lines 2, 4 demonstrate the ideal Fermi

distributions for electrons and two times heavier holes respectively. Right panels: lines 1, 2, 3 present PIMC

electron–electron, hole–hole and electron–hole correlation functions scaled by Bohr radius respectively, while line

4 show results of analytical approximations [19] for electrons. Parameters of degeneracy nλ 3
e for electrons are

increasing from upper to bottom rows as nλ 3
e = 5, 10, 15, 20.
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Figure 2: Contour plots of the repulsive effective exchange pair pseudopotentials in phase space. Left panel: dark

area β ve
lt ≈ 0, white area β ve

lt ≥ 1.9, me = 1. Right panel: dark area β vh
lt ≈ 0, white area β vh

lt ≥ 1.5, mh = 2.

7 CONCLUSIONS

The new path integral representation of the quantum Wigner function in the phase space has

been developed for canonical ensemble. Explicit analytical expression of the Wigner function

accounting for Fermi statistical effects by effective pair pseudopotential has been obtained. De-

rived pseudopotential depends on coordinates, momenta and degeneracy parameter of fermions.

The new quantum Monte Carlo method for calculations of average values of arbitrary quantum

operators has been proposed. To test the developed approach calculations of the momentum

distribution function and pair correlation functions of the ideal system of Fermi particles has

been carried out. Calculated by Monte Carlo method the momentum distributions for degener-

ate ideal fermions are in a good agreement with analytical Fermi distribution in a wide range of

momentum and degeneracy parameter. Generalization of this approach for studies influence of

interparticle interaction on momentum distribution functions of strongly coupled Fermi system

is in progress. First results show appearance of long quantum ‘tails’ in the Fermi distribution

functions.
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