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Summary. Pressure generation in absorbing liquids irradiated with nanosecond laser pulses is 
mainly due to thermoacoustic and evaporation mechanisms provided the laser intensity is not 
too high. Despite many years of investigations there are some unresolved problems which 
concern to surface and bulk (explosive) evaporations regimes as well as non-equilibrium 
superheated liquid behavior in near-critical region. In the present paper pressure behavior in 
water irradiated with nanosecond laser pulses in the cases of 1 m and 10 m absorption 
length is investigated in the framework of one-dimensional continual approach. It is shown, in 
particular, how external atmospheric pressure can modify the generated vaporization pressure 
signals compared with the vacuum case. 

1 INTRODUCTION 

Laser action on absorbing liquids is investigated for many decades (see e.g., [1-13] and 
references therein). However, some important aspects of the problem remain unclear. This 
relates, in particular, to the surface and bulk (explosive) vaporization regimes as well as non-
equilibrium superheated liquid behavior in near-critical region. In [12, 13] applicability limits 
of the surface evaporation model were determined in the case of water irradiated nanosecond 
laser pulses with wavelength corresponding to 1 m and 10 m absorption length. It was 
mentioned also that the experimental behavior of vaporization pressure comparable in 
amplitude with thermoacoustic pressure signals [1, 8, 12] differs significantly from the 
theoretical case where no external atmospheric pressure is taken into account. 

In the present paper vaporization pressure signals are calculated taking into account 
phenomenologically external atmospheric pressure effect which prevents intense vaporization 
if saturation pressure PS is lower than atmospheric pressure Pext. In sec. 2 and 3 formulation of 
the problem and discussion of the obtain results are given. Concluding remarks are given in 
the fine section 4. 
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2 FORMULATION OF THE PRESSURE GENERATION PROBLEM 
Generation of acoustic perturbations in irradiated absorbing liquids is usually described 

with the help of the following equations [12, 13] 
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where ρ – density, u – velocity, P – pressure, T – temperature, CP – heat capacity at constant 
pressure,æ – heat conduction coefficient, Q – absorbed density heat power, – absorption 
coefficient. The laser pulse intensity is approximated with the expression 
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where Im – maximum value of absorbed laser intensity, t – FWHM of laser pulse. For this 
form I(t) one has the relations E = Imt1.03 = (∂I/∂t)maxt20.7. 

From equations (1-4) in linear approximation it follows [3] 
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where  – thermal expansion coefficient while P1 and Pta denote surface evaporation and 
thermoacoustic pressure signals. In equation it is also supposed that at z = z1 the temperature 
gradient is zero and the generated acoustic wavelength is longer than the absorption and heat 
diffusion lengths [3]. 

Vaporization process is determined by the following boundary conditions 
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where PS – saturated pressure, L – latent heat of evaporation, v – vaporization front velocity, 
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TB – boiling temperature for pressure Pext = PB. Accommodation coefficient is equal to unity 
[14-15]. Effect of atmospheric pressure is taken into account phenomenologically with the 
help of factor h(T) and substruction Pext in equations (8-9) which tend to vacuum vaporization 
case with Mach number M = 1 [7] at sufficiently large values of PS compared with Pext. The 
factor h(T) changes from zero at T1 = Tb to unity at T1 – Tb>>ΔT and h(ΔT) = 0.9. 

Applicability limits of the considered model are determined by the condition that the 
subsurface temperature maximum does not succeed the superheating limit temperature 
Tlim = 0.9 TC. These limits were investigated in ref. [12-13] for different laser action regime 
and it was shown that nonlinear effect due to density variation with temperature is not very 
important in this case. At the present paper the same calculation procedure is used as in ref. 
[12-13] with the same initial temperature T0 = 20˚C. In metallic liquid (Hg) with high values 
of α the laser energy absorption was considered as a surface effect and absorbed laser 
intensity was inserted in boundary condition with simultaneous putting Q = 0 in equation (4). 
Numerical values of some parameters used in calculation are shown in table 1 where 
temperature dependence parameters are taken at T = 20˚C. 

 

Name Symbol,
dimension

H2O Hg 

FWHM of laser pulse t, ns 
200, 
300 35 

Absorption coefficient α, cm-1 1.2·104, 
1.15·103 >105 

Liquid density , g/cm3 1.0 13.5

Heat capacity at constant pressure CP, J/(g·K) 4.18 0.137

Latent heat L, J/g 2260 282

Boiling temperature TB, ˚C 100 357

Critical temperature TC, ˚C 374 1480

Threshold temperature interval ΔT, ˚C 40 70

Exponentialcoefficient A 12.7 11.6

Thermal conduction coefficient χ, cm2/s 0.16·10-2 5.8·10-2

Thermal expansion coefficient β, K-1 3.7·10-4 1.8·10-4

Table 1. 

3 RESULTS AND DISCUSSION 
Due to lack of sufficient information on absolute pressure values in experiments [8, 12] 

only the cases where the thermoacoustic and vaporization signals are comparable in 
magnitudes is considered here. Effect of external pressure Pext on these signals behavior is 
shown on fig.1 for the cases of E = 0.04 J/cm2, α = 1.2·104 cm-1 (a) and E = 0.33 J/cm2, 
α = 1.15·103 cm-1 (b) together with partial amplitude pressure dependence on laser fluence 
(c,d). It is clear from fig.1 that the threshold effect gives rise to some delay and shortening of 
pressure signals as compared with vacuum vaporization case. 
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Fig.2. Experimental (a,c) and theoretical (b,d) pressure curves for α = 1.2·104 cm-1 in the case where 
thermoacoustic and vaporization peaks are comparable. E = 37 mJ/cm2 (b) and E = 38 mJ/cm2 (d). In (b,d): solid 
line – total pressure signal, doted – laser pulse intensity, dashed – thermoacoustic signal, dash-doted – 
vaporization signal in atmosphere. 

In the case of absorption length α = 1.15·103 cm-1 experimental and theoretical pressure 
curves (fig.4b) are rather different. It should be mentioned that in the considered model case 
vaporization peak does not exceed the thermoacoustic one so that the experimental regime 
fig.4a [1] is probably out of the applicability limit of the surface evaporation model 
determined by achievement of superheating limit temperature Tlim = 309˚C in the subsurface 
region. This condition leads to limiting value of E = 0.85 J/cm2 with corresponding surface 
and maximum temperature values T1 = 140˚C and Tm = 305˚C, respectively. Discussion on the 
explosive boiling regime (see e.g., [5,9-11] and references therein) is out the scope of the 
present paper. 

During laser ablation of metallic liquids the surface temperature T1 differs but slightly from 
the subsurface temperature maximum Tm because of higher values of absorption and heat 
conduction coefficients than in dielectric liquids. In this case thermoacoustic signal in linear 
approximation is proportional to T1/t and not to I/t from equation (5). Dependence of 
vaporization recoil pressure P1(T1) in metallic and dielectric liquids is the same for 
corresponding thermophysical parameters. 
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with the surface evaporation model. This question has no explicit answer up to now. Possible role 
of surface vaporization front instabilities [7] is also unclear in nanosecond laser ablation regime 
similar to those used in [1, 8]. 

Further experimental and theoretical investigations are also needed for recoil pressure behavior 
when the explosive boiling process begins. Such investigations can give new information on 
metastable and unstable liquid behavior in near-critical region. 
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