
MATHEMATICA MONTISNIGRI COMPUTATIONAL MATHEMATICS
Vol XXXVI (2016)

2010 Mathematics Subject Classification: 03B05, 90C27, 68W01.

Key words and Phrases: Sedimentation Algorithm, Boolean satisfiability, Max-SAT, solver, combinatorial

optimisation.

APPLICATION OF SEDIMENTATION ALGORITHM FOR

SOLVING MAX-SAT PROBLEM

STEVAN LJ. KORDIĆ
*

*
 Maritime Faculty

University of Montenegro
Dobrota 35, 85330 Kotor, Montenegro

e-mail: stevan.kordic@gmail.com

Summary. The paper presents one application of the general algorithm for solving

combinatorial optimisation problems, proposed by the author and named Sedimentation

Algorithm. It demonstrates the ability of Sedimentation Algorithm to be applied in the field of

Boolean satisfiability problems, especially in the cases of MAX-2SAT and MAX-3SAT.

Experimental results contain comparison between three different variants of Sedimentation

Algorithm for solving the MAX-SAT problem.

1 INTRODUCTION

The MAX-SAT problem is one of the major problems in the field of Boolean satisfiability

(SAT). We can formulate it as the problem of finding an assignment for the Boolean variables

that satisfies the maximal number of clauses for a given Boolean propositional formula. The

MAX-SAT problem is the subject of numerous studies including the annual competition for

the best SAT and MAX-SAT solver (see www.maxsat.udl.cat).

The recent state-of-art MAX-SAT solvers can be classified into two main categories:

branch-and-bound solvers and satisfiability-based solvers, for more details see
1
. The most

competitive exact branch and bound algorithms for solving the MAX-SAT problem are

developed on the concepts and ideas found in
2
,

3
,

4
,

5
,

6
,

7
,

8
,

9
,

10
, etc.

In this paper we present the application of Sedimentation Algorithm (SEDA) to the MAX-

SAT problem. SEDA is a general combinatorial branch and bound algorithm developed by

the author for solving optimisation problems. Originally, it was developed to solve the Berth

Allocation Problem (BAP), see
11

. A problem can be solved by SEDA if it can be formulated

(modelled) by the certain parameters, functions and procedures required by SEDA. The

efficiency of SEDA depends heavily on the way a problem is modelled. Here we present two

such SEDA modellings for solving the MAX-SAT problem: Clause Modelling (CM) and

Variable Modelling (VM). In addition to pure CM, we also consider CM plus the Pure Literal

Rule (CM+PLR) to illustrate the increase in the efficiency of SEDA when an additional look-

a-head technique is included. Our experimental results prove the superiority of CM+PLR over

CM and VM. In the present form CM+PLR is not comparable with the state-of-art MAX-SAT

solvers. Some additional refinements of CM and some more sophisticated estimation of the

lower bound of true clauses is needed to increase the efficiency of SEDA in order to be

comparable with the state-of-art MAX-SAT solvers.

45

Stevan Lj. Kordić

The rest of this paper is organized as follows. First, we introduce our notation and

explain the MAX-SAT problem in Section 2. In Section 3, SEDA is described. In Section 4

CM, CM+PLR and VM are described. Experimental results are presented in Section 5.

Finally, Section 6 contains concluding remarks and directions for future research.

2 MAX-SAT PROBLEM

2.1 Formulation of the MAX-SAT problem

For a given set of Boolean variables },,...,{ 1 nxxV the variable ix may take values 0 (for

false) or 1 (for true). A literal il is the variable ix or its negation ix . A clause is a

disjunction of literals. A propositional formula is in conjunctive normal form (CNF) if it is

a conjunction of clauses.

An assignment v is a function }.1,0{},...,1{: nv The variable ix is true in the

assignment v if ,1)(iv and similarly we say that the variable ix is false in the assignment

v if .0)(iv For our convenience we will use notation).(ivvi

Maximum Satisfiability Problem (MAX-SAT) is the problem of finding an assignment v

that maximises the number of true clauses in CNF formula . If the clauses are restricted to

have exactly k literals, we get the MAX-kSAT problem. In this paper we will particularly

examine the MAX-2SAT and MAX-3SAT problems. MAX-SAT and MAX-kSAT are NP-

hard problems with 2k .

2.2 Solving the MAX-SAT problem

Solving the MAX-SAT problem for the given CNF formula , consists of finding an

assignment v that maximises the number of true clauses in . Since the formula is in

CNF, it can be presented as: lcc ...1 , where ic are the clauses of the given formula

. If the clause ic is true in the assignment v we will denote it as ,1)(icv and similarly

0)(icv , if it is false in the assignment v . After the introduction of the notation above we can

formulate the objective function for solving the MAX-SAT problem as:

Maximise

l

i

icv
1

)(, for the given formula lcc ...1 and all the possible assignments v . (1)

From the expression (1) we can easily conclude that the sequence nvv ,...,1 , represents the set

of decision variables for the MAX-SAT problem.

3 THE SEDIMENTATION ALGORITHM

Sedimentation Algorithm (SEDA) is a general combinatorial optimisation algorithm

introduced for the first time by the author in [5] for solving the Berth Allocation Problem

(BAP). In this work it is presented in a more general form. SEDA belongs to the class of

branch-and-bound algorithms, which uses the backtracking mechanism combined with some

look-a-head techniques for the exact solving of optimisation problems. Here we present a

recursive variant of the algorithm suitable for the maximisation type of problems. It is the

46

Stevan Lj. Kordić

matter of straightforward modification to adopt the algorithm for minimisation type of

problems.

In order to solve a problem by SEDA first we need to present the problem’s model in the

form required by SEDA. The problem modelling consists of: input parameters, internal

structures, functions and procedures as listed and described in subsections 3.1, 3.2 and 3.3.

After the problem modelling, SEDA will work as it is represented in Subsection 3.4.

3.1 SEDA input parameters

The SEDA input parameters are following:

},...,{ 1 leeE a set of decision variables. For the work of the algorithm it is sufficient to

pass only the number of the decision variables l .

},...,{ 1 lDDDom the set of domains (possible values) of decision variables. SEDA will

work only if the domains of the decision variables iD , for each },...,1{ li are finite

sets.

),(the pair of heuristic functions set and values ordering . Set },...,{ 1 l

consists of heuristic functions },,{: RNDii for each decision variable ie .

For any two members iDba, , numbers),(ai and),(bi measure which value of

decision variable ie is better: a or b , in the -th step of solution construction (after

the 1 decision variables’ values have been determined). The value a will be better

than b if),(),(ba ii . Usually is a real number ordering: or .

},...,1{},..,1{: ll the order in which decision variables are determined. The initial

value of the is a permutation of the set },..,1{ l . The algorithm determines a value for

the decision variable)1(e , then a value for the decision variable)2(e , etc. When a

value is determined for the last decision variable)(le , then the sequence lee ,...,1 is a

feasible solution of the problem.

f the objective function, depending on the values of decision variables, i.e.),...,(1 leef .

We assume that the objective function can be represented as:

l

i

iil efeef
1

1)(),...,(, (2)

where functions)(ii ef are nonnegative for each },...,1{ li . SA can significantly

reduce the solution space and speed up its running time if iif , for each },...,1{ li .

Unfortunately, in the case of MAX-SAT this is not true, therefore the part of SEDA

dealing with this case will not be presented in the paper.

3.2 Internal structures used by the SEDA

Internal structures used by SEDA are the following:

m the sequence in which the values of decision variables with the current best value of

the objective function are kept during the work of the algorithm. This is the sequence

where current best solution is kept.

47

Stevan Lj. Kordić

maximum the variable where value of the objective function is kept for the current best

solution. The value of the variable maximum is completely determined by the value of

the sequence m , i.e.),...,(1 lmmfmaximum .

 the counter of the decision variables. We will also refer on variable as a

construction step counter.

3.3 Functions and procedures used by the SEDA

Procedures used by SEDA are the following:

),on(FindSoluti Dom the recursive procedure which finds the value for the decision

variable)(e , in the domain set DomD)(, and then proceed until a feasible

solution is reached. The procedure will be described in more details in Subsection 3.4.

),(Estimation Dom the function which estimates the value of the objective function

over the decision variables domain sets in Dom . If the values for the first 1

decision variables in the ordering are determined i.e. values are determined for

},...,{)1()1(ee , then the function),(Estimation Dom can be represented as:

.)stimation(NonDetVarE)(),(Estimation
1

1

)()(

i

ii efDom (3)

The sum in (3) is calculated according to the objective function (2) for the decision

variables with determined values: },...,{)1()1(ee . For the decision variables with still

undetermined values },...,{)()(lee we use the function)stimation(NonDetVarE to

estimate maximal possible value to approximate objective function f . The quality of

the approximation highly effects the SEDA running time.

),Sediment(a the function which propagates the assignment of a to the decision

variable)(e in the domains of the undetermined decision variables:

},...,{)()1(lDD . Also, it applies various general and problem specific look-a-head

techniques for further reduction of },...,{)()1(lDD . Upon the “sedimentation”, the

function returns the new value to the set of domains. The name of the algorithm was

inspired by the procedure resembling the natural phenomenon related to the

sedimentation of particles in fluids.

)tion(ReportSolu the procedure which checks if the new feasible solution is better i.e.

it has higher value of the objective function f , than the current best solution. If this is

the case, then it becomes the new current best solution and it is saved in the variable m

and its objective function value is saved in the variable maximum .

),,Minx(D the function returns the element of the set D with the minimal value,

in the terms of the relation , of the function , i.e. it returns Da so that:

),(),()(xaDx (4)

48

Stevan Lj. Kordić

3.4 SEDA description

The pseudo code of the SEDA is given in the Table 1. It consists of the two parts: the main

body of the algorithm, lines [16] – [20] and the procedure),on(FindSoluti Dom , lines [2] –

[15].

In the main body of the algorithm the variables described in Section 3.1 and 3.2 are

initialised, lines [16] – [18]. Then procedure),1on(FindSoluti Dom is called in line [19]. This

procedure recursively determines the values of decision variables, starting from)1(e , then

)2(e until)(le is reached. After examining all possible values for decision variables the value

of the objective function for optimal solution is stored in the variable maximum . Optimal

solution itself is stored in the sequence m , as it is described in Section 3.2. At the end the

values m and maximum are returned from the main body of the algorithm, line [20].

As previously mention, the procedure),on(FindSoluti Dom recursively examines the

solution space. In order to describe how it works, let us suppose that the values of decision

variables },...,{)1()1(ee are determined. The procedure input variable Dom is the set of

decision variables domains },...,{ 1 lDD . We assume that these domains are consequent with

the values of the decision variables },...,{)1()1(ee . The next decision variable for which

values are going to be examine is)(e .

In the line [3] the original values of the whole set of domains Dom is saved in the

auxiliary variable mDo . Also, in particular, the value of the domain)(D is saved in the

auxiliary variable D , line [4]. If necessary, the algorithm will examine all the elements of the

set D as the potential values of the decision variable)(e . After examining a particular value

Da , that value is removed form D . Therefore, the algorithm examines values for the

decision variable)(e while 0D and there is a chance to improve our current best solution

i.e. maximummDo),(Estimation , in the while loop lines [5] – [14].

In the line [6] we select the element of the set D with the minimal value, in the terms of

the relation , of the heuristic function)(as the value of the decision variable)(e . The

efficiency of SEDA will heavily depend on the manner in which element of the set D with

the minimal value of the heuristic function)(is selected. After the selection, the value is

removed from the set D in line [7]. The selection of the value for the decision variable)(e

will have consequences on the domains of decision variables yet undetermined:

},...,{)()1(lDD . These consequences are handled by the call of the),Sediment()(e

function in line [8] which returns new value for decision variables domains. Notice that only

the domains of yet undetermined decision variables may be changed.

Since, the value of the decision variable)(e is determined and all the consequences are

reflected in the domains of yet undetermined decision variables it is befitting to estimate

the new maximal possible value of the objective function f again. If the condition

maximumDom),1(Estimation is true, the check of the new current best solution in line

[10] is performed by calling procedure)tion(ReportSolu . If l , we proceed with the

49

Stevan Lj. Kordić

examination of the next decision variable by procedure call),1on(FindSoluti Dom in line

[11].

Finally, the original value of the decision variables domains is restored in line [13] in order

to examine the remaining values for the decision variable)(e .

The backtracking mechanism of SEDA is “hidden” by the recursive formulation of the

procedure),on(FindSoluti Dom . The non-recursive formulation of SEDA is more complex,

but also more efficient. This is why the recursive formulation of SEDA was used to describe

the algorithm in this section and non-recursive implementation of SEDA for experimental

results in Section 5. The transformation of any recursive function or procedure to a non-

recursive one is, more or less, a technical matter. Therefore, the description of non-recursive

SEDA is omitted from this paper.

1 SedimenatationAlgorithm(l , Dom ,),(, , f)

2 procedure),on(FindSoluti Dom

3 DommDo

4)(DD

5 while 0D and maximummDo),(Estimation then

6),,Minx()()(De

7 }{\)(eDD

8),Sediment()(eDom

9 if maximumDom),1(Estimation then

10)tion(ReportSolu

11 if l then),1on(FindSoluti Dom endif

12 endif

13 mDoDom

14 endwhile
15 end

16 lie ,...,1|0

17 lim ,...,1|0

18 0maximum

19),1on(FindSoluti Dom

20 return },{ maximumm

21 end

Table 1: The Sedimentation Algorithm

The described SEDA is a totally correct algorithm
11

 i.e. it halts and it always provide correct

answer.

50

Stevan Lj. Kordić

4 MAX-SAT MODELING FOR SEDIMENATATION ALGORITHM

There are two ways of the MAX-SAT modelling to fit the SEDA framework. In the first

modelling (CM) decision variables will correspond to the clauses of the CNF formula and in

the second (VM) decision variables will correspond to the variables of the CNF formula

(VM). Using the notation introduced in 2.1 we describe both modelings.

4.1 MAX-SAT clause modelling

A CNF can be represented as lccc ...21 , where ic are the clauses for each

},...,1{ li . For each clause ic we will introduce a decision variable ie . Thus, the set of

decision variables will be },...,{ 1 leeE .

Let kpppc ...21 be any of the clauses from the formula . By the definition of a

clause: ip , is a literal for each },...,1{ ki . We assume that literals ip , for },...,1{ ki are

sorted by the number of occurrences in the formula in a descending order. The clause c ,

will be either true or false. If it is true than at least one of the literals ip , for },...,1{ ki is true,

if it is false, then all ip , for },...,1{ ki are false. In order to solve the MAX-SAT problem for

the formula , we have to examine all these possibilities for each of the clauses. If we

examine the clause c in the following way: in the first step we examine formula if 1p is

true. In the second step we can proceed with examining the formula if 2p is true. Since, we

have already examined formula if 1p is true, then in the second step instead of examining

the formula only if 2p is true, we can examine the formula if 2p is true and 1p is false. In

the third step we will examine the formula if 3p is true and 1p and 2p are false. From the

previous procedure of examining the formula we can generate domain a set c for the

clause c as:

}0},,...,{},,...,,{},...,,,{},,{},{{ 111213121 kkkc ppppppppppp . (5)

From (5) we easily define the elements of the set of domains },...,{ 1 lDDDom as
iciD ,

for each },...,1{ li .

The inclusion of the 0 into c and hence into the domains sets is done to insure the

completeness of SEDA. Due to the sedimentation procedure the elements of the domains for

the decision variables will change during the work of SEDA. More precisely, some elements

from the member sets will be deleted and hence, there is a possibility that 0 appear.

Therefore, it must be included into the domain sets.

The heuristic functions },,{: RNDii for each decision variable ie , },...,1{ li

are defined as follows:

.0:

},...,{ :1

},...,1{somefor },,...,,{ :" in soccurrence ofnumber "

),(1

11

k

jjj

i pp

k jpppp

 (6)

51

Stevan Lj. Kordić

In this MAX-SAT problem modelling heuristic functions are independent of the

construction step counter . This simplification enables an easier calculation of these

functions, but distort their heuristic qualities as the construction progress.

The relation is defined as , i.e. . As a consequence of this definition SEDA

will choose more frequent literals to be true when examining whether a clause is true or not.

The sequence reflects a descending ordering of clauses from the formula by the sum

of the literals occurring in them.

Finally, we define the objective function f according to the formula (2) in the following

manner:

ki

ij

ii ppcli
epk j

ef ...and},...1{for ,
.otherwise :0

}),...,1{(:1
)(1 (7)

All procedures and functions introduced in 3.2. except)(Estimation and),Sediment(a

needs no further explanation for the CM of MAX-SAT.

The function)(Estimation can be represented as in (3). In the function

)stimation(NonDetVarE we use a resolution to estimate the maximal possible value to be

used for the approximation of the objective function f . The maximal value of the function

)stimation(NonDetVarE is lr . We apply the resolution for the limited amount of time

and each time we derive an empty clause we decrease the value of r by one. When the

resolution stops the function returns the current value of r . This procedure is correct, since, if

from the set of r clauses we can get an empty clause by applying resolution, then at least two

clauses of the initial set are not satisfiable at the same time. If we leave one out, then at most
1r clauses may be satisfiable.

First the procedure),Sediment(a sets the domains of all clauses with decision variables

still undetermined to }{a if they contain at least one common literal with a . These clauses

will be true because of a , so we can discard all the other possibilities. Also, for these clauses

hash functions have to be updated accordingly. Furthermore, we negate all the literals from a

and save them as a . Then we erase all the literals from a in all the elements of still

undetermined decision variables domains. We can do that since if the elements in a are true,

then the elements in a are false. So, any clause containing a literal from a is not going to be

true because of the literal being false. During these deletions there is a possibility of empty set

occurrence. Finally, we rearrange the sequence from the position 1 to l : in the initial

part we put those indices with empty sets or singletons decision variables domains and the

rest follows. In this way we firstly determine the values of decision variables that are

unsatisfiable (having only an empty set in its domain) or satisfiable with only one set of

literals.

The CM of the MAX-SAT problem within SEDA results in an exact branch-and-bound

type of algorithm for solving the MAX-SAT problem. If we add some additional rules as

look-a-head techniques to the),Sediment(a procedure, we can increase the efficiency of

SEDA significantly. For example we can add the Pure Literal Rule (PLR), which can be

formulated as: if a literal il , for some },...,1{ ni appears in the formula and il does not,

than we can assign a il to be true. The improved CM modelling of the MAX-SAT problem

52

Stevan Lj. Kordić

we denoted as CM+PLR. In the Section 5 we shell compare it with the CM and VM of the

MAX-SAT problem.

4.2 MAX-SAT variable modelling

In VM of the MAX-SAT problem for SEDA, for each variable ix , },...,1{ ni we will

introduce a decision variable ie . The set of decision variables then becomes },...,{ 1 neeE .

The domain set for each decision variable in this case is: }1,0{iD , },...,1{ ni . The value 0

stands for false and the value 1 for true.

Before defining heuristic functions let us first introduce a function),,(Simplify vk . This

function simplifies the CNF formula if we assign value the v to the variable kx . The

sequence of formulas i , },...,1{ ni , are defined in the following recursive way:

}.{2,...,for),),(,Simplify(

,

)(1

1

n иe
 (8)

Now, we can define heuristic functions },,{: RNDii for each decision

variable ie , },...,1{ ni as:

1 :" in soccurrence ofnumber "

0 :" in soccurrence ofnumber "
),(

)(

)(

x

x
i (9)

The relation is defined as , i.e. . As a consequence of this definition SEDA

will choose more frequent literals to be true when examining if a variable should take the true

or false value?

The sequence will reflect a descending ordering of the variables from the formula by

the sum of its literals.

Finally, the objective function f is defined according to formula (2) in the following

manner:

}.,...1{for ,")(if in clauses trueofnumber ")()()()()(nexvef (10)

The definition of the functions)()()(ef , },...1{ n depends on the stage of the solution

construction. If we are at the step , then we are determining the value for decision variable

)(e . We assign the value 0 or 1 to it, hence the value of the function)()()(ef will be the

number of true clauses in if)()()(exv .

Similarly, as in 4.1 only the function)(Estimation and procedure),Sediment(a needs

some further explanation for the variable modelling of MAX-SAT.

The function)(Estimation can be represent as in (3). In the function

)stimation(NonDetVarE , we use a heuristic function to calculate it. The value of the

heuristic function is the number of occurrences of a literal (9). If we select that literal to be

true, then the same value will be also the number of true clauses in the formula after

previously done simplifications. There are only two possible values in the domains of

53

Stevan Lj. Kordić

decision variables: 0 or 1. Thus, we take the maximal value of the heuristic function of for

these two values to estimate the number of clauses to be true for that decision variable.

The procedure),Sediment(a first propagates ae)(and then updates heuristic

functions. Finally, the sequence is rearranged from the position 1 to l : in the initial

part we put those indices which have singletons decision variables domains and the rest

follows. In this way we firstly determine values for pure literals decision variables.

The variable modelling of the MAX-SAT problem for SEDA is obviously equivalent to the

Davis–Putnam–Logemann–Loveland (DPLL) algorithm for MAX-SAT.

5 EXPERIMENTAL RESULTS

In this section, we present the experimental results of the MAX-SAT problem solved by

SEDA as it is described in Section 4. We will make comparison between three SEDA based

modelling of the MAX-SAT problem:

1. MAX-SAT Clause Modelling (CM) as described in Section 4.1.

2. MAX-SAT Clause Modelling as described in Section 4.1. plus the PLR added in

the),Sediment(a procedure (CM+PLR).

3. MAX-SAT Variable Modelling (VM) as described in Section 4.2.

All the modellings were coded in the Wolfram Mathematica v10.3 programming language.

Wolfram Mathematica v10.3 interprets instructions and, although it is very convenient for

algorithm design, it does not execute programs quickly. Therefore, experimental results in this

paper cannot be directly compared to with the state-of-art MAX-SAT solvers running on the

compiled versions of program. The tests were conducted on a computer with an Intel Core i7

Q720 1.60-GHz CPU and 6 GB of RAM running the Microsoft Windows 8 64-bit operating

system.

The experimental evaluation is performed on the MAX-2SAT and MAX-3SAT types of

problems. The test examples for the MAX-2SAT problems have 30 variables and for MAX-

3SAT there are 50 variables. For each problem type 300 formulas with 25, 50, 75, 100, 125,

150, 175 and 200 clauses were randomly generated. For all the sets we recorded the

minimum, average and maximum time (out of 300 values) required to find the solution and

standard deviation. All the running times in the Tables 2 and 3 are expressed in seconds.

Number

of

clauses

MAX-2SAT | 30 variables | 300 randomly generated formulas

CM CM+PLR VM

min avg max σ min avg max σ min avg max σ

25 0.03 0.06 0.14 0.01 0.01 0.02 0.08 0.01 0.02 0.06 0.09 0.01

50 0.12 0.47 4.58 0.49 0.06 0.23 1.09 0.16 0.06 0.26 2.29 0.26

75 0.31 4.64 37.53 4.69 0.22 2.48 13.35 2.08 0.30 9.58 114.50 12.87

100 1.84 24.18 176.11 20.09 0.80 10.66 36.22 7.28 1.47 64.74 583.08 70.86

125 6.81 94.85 478.22 64.06 1.89 41.69 177.12 31.88 8.80 208.98 1624.01 220.68

150 27.11 180.67 712.38 116.06 7.94 85.36 540.57 61.20 27.63 352.66 1767.90 280.64

175 28.42 278.69 1261.10 179.36 32.35 176.52 696.87 112.00 ― ― ― ―

200 75.77 386.73 1564.56 226.96 27.64 318.62 1188.21 177.67 ― ― ― ―

Table 2: MAX-2SAT example with 30 variables

54

Stevan Lj. Kordić

From the Table 2 it is evident that both CMs are faster than the VM for the MAX-2SAT

problem with 30 variables. The VM results for 175 and 200 clauses are not presented because

the time needed for solving 300 examples was too long. A much better times of the CMs over

the VM are due to the much more precise)(Estimation function. As expected the CM+PLR

is faster than the CM because of additional PLR reduction in the solution space.

Figure 1: MAX-2SAT problem density chart of the CM+PLR for 175 clauses

The speed up ratio varies from cca 1.21 to 3. This is a good illustration of the effect of a

single look-a-head technique has on the reduction of the running time. The implementation of

more look-a-head techniques in the sedimentation phase of the algorithm and more precise

estimation function would most definitely result in the further reduction of running times. The

inclusion of the replacement of almost common clause rule, the complementary unite clause

rule and other rules described in [9] in the sedimentation procedure of CM and VM will be

the subject of future efforts on the adaptation of SEDA for solving the MAX-SAT problem.

Figure 2: MAX-2SAT average running time chart for the CM, CM+PLR and VM

Notice also that for the CM, CM+PLR and VM standard deviation is lower than the

average running time. Actually, the sum of the average time and standard deviation is lower

than the double average time. Therefrom we can conclude that in more than 70% running time

will be less than double average running time. The density chart of the CM+PLR for 175

clauses are given in Figure 1. The chart with the average running time of MAX-2SAT

examples for all three methods is given in Figure 2.

55

Stevan Lj. Kordić

Number

of

clausas

MAX-3SAT | 50 variables | 300 randomly generated formulas

CM CM+PLR VM

min avg max σ min avg max σ min avg max σ

25 0.02 0.05 0.08 0.01 0.02 0.02 0.05 0.01 0.05 0.09 0.20 0.03

50 0.11 0.16 0.33 0.03 0.05 0.09 0.16 0.02 0.11 0.25 0.45 0.07

75 0.22 0.30 0.53 0.05 0.12 0.21 0.35 0.04 0.17 4.93 216.14 21.16

100 0.34 0.52 1.05 0.13 0.23 0.39 0.85 0.08 ― ― ― ―

125 0.51 0.82 3.57 0.32 0.41 0.69 2.79 0.23 ― ― ― ―

150 0.63 1.46 17.84 1.44 0.58 1.36 15.75 1.37 ― ― ― ―

175 0.81 9.38 181.55 21.20 1.21 8.59 135.92 16.99 ― ― ― ―

200 1.01 59.79 1691.97 123.28 1.04 43.00 371.05 58.30 ― ― ― ―

Table 3: MAX-3SAT example with 50 variables

Almost the same conclusion can be made for the MAX-3SAT examples. Nevertheless, the

CM+PLR is less efficient in MAX-3SAT problem over the CM as the number of clauses

increase. The chart with the average running time of MAX-3SAT examples for all three

methods is given in Figure 3.

Figure 3: MAX-2SAT average running time chart for the CM, CM+PLR and VM

6 CONCLUSION

The first conclusion is that the SEDA, as a general optimisation algorithm, is capable of

solving the MAX-SAT problem. Considering the two MAX-SAT problem modellings we

presented here it appears that the CM is more promising. As previously mentioned, this is due

to more sophisticated estimation of the input formula remaining true clauses during the work

of the SEDA. Also, it is apparent that the addition of more look-a-head techniques into the

SEDA sedimentation phase reduces the algorithm running time. The illustration of the above

is inclusion of the pure literal rule.

Nether of the modellings have connection between the SEDA heuristic functions and

objective function. Establishing a connection between them will enable the most efficient

reductions of the solution space for the SEDA. Therefore, a further work on both modellings

which will try to establish the connection between heuristic functions and objective function

is worth trying.

56

Stevan Lj. Kordić

Also, neither of the approaches presented here can be directly compared to the state-of-art

MAX-SAT solvers for two reasons. The first one is the difference in speed between complied

and interpreted programs and the second one is the lack of more sophisticated concepts for

solving the MAX-SAT problem.

The Sedimentation Algorithm offers a good general framework for solving MAX-SAT.

Still, unless some more sophisticated methods for reducing the solution space or some

modelling refinements are incorporated, it will not be comparable to the state-of-art MAX-

SAT solvers. Still, the point of this paper is to show that SE is general enough to cover a wide

variety of problems, while the experimental results show which modelling approaches give

higher promises.

Acknowledgement

I would like to thank my colleagues: prof. Žarko Mijajlović, Tatjana Davidović, Predrag

Janičić and Nataša Kovač for comments on the earlier versions of this article.

REFERENCES

[1] A.C. Teixidó, Encoding and Benchmarks for MaxSAT Solving. Ph.D. Thesis, Universitat de

Lleida: Spain (2012).

[2] T. Alsinet, F. Manyà and J. Planes, “A Max-SAT solver with lazy data structures”, Proceedings
of the 9

th
 Ibero-American Conferences on Artificial Intelligence (IBERAMIA 2004), Puebla,

México, 334–342 (2003).

[3] S. Darras, G. Dequen, L. Devendeville and C.M. Li, “On inconsistent clause-subset for Max-

SAT solving”. Proceedings of 13
th
 International Conference on Principles and Practice of

Constraint Programming (CP 2007), Providence, USA, 225–240 (2007).

[4] F. Heras, and J. Larrosa, “New inference rules for efficient Max-SAT solving”, Proceedings of

the National Conference on Artificial Intelligence (AAAI 2006), Boston, USA, 68–73 (2007).

[5] J. Larrosa, F. Heras and S. De Givry, “A logical approach to efficient max-sat solving”,

Artificial Inteligence, 172 (2-3), 204–233 (2008).

[6] C.M. Li, F. Manyà and J. Planes, “Exploiting unit propagation to compute lower bounds in
branch and bound Max-SAT solvers”, Proceedings of the 11

th
 International Conference on

Principles and Practice of Constrain Programming (CP 2005), Sitges, Spain, 403–414 (2005).

[7] C.M. Li, F. Manyà, and J. Planes, “Detecting disjoint inconsistent subformulas for computing

lower bounds for max-sat”, Proceedings of the 21
st
 National Conference on Artificial

Intelligence (AAAI 2006), Boston, USA, 86–91 (2005).

[8] C.M. Li, F. Manyà, and J. Planes, “New Inference Rules for Max-SAT”, Journal of Artificial

Intelligence Research, 30, 321–359 (2007).

[9] H. Zhang, H. Shen and F. Manyà, “Exact algorithms for MAX-SAT”, Electronic Notes in

Theoretical Computer Science, 86 (1), (2003)

[10] C. Ansotegui, M. L. Bonet and J. Levy, “SAT-based MaxSAT algorithms”, Artificial

Intelligence, 196, 77-105 (2013).

[11] S. Kordić, T. Davidović, N. Kovač and B. Dragović, “Combinatorial Approach to Exactly
Solving Discrete and Hybrid Berth Allocation Problem”, Applied Mathematical Modelling

(2016), doi: 10.1016/j.apm.2016.05.004

Received April, 1 2016

57

