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Summary. The paper presents one application of the general algorithm for solving 

combinatorial optimisation problems, proposed by the author and named Sedimentation 

Algorithm. It demonstrates the ability of Sedimentation Algorithm to be applied in the field of 

Boolean satisfiability problems, especially in the cases of MAX-2SAT and MAX-3SAT. 

Experimental results contain comparison between three different variants of Sedimentation 

Algorithm for solving the MAX-SAT problem. 
 

1  INTRODUCTION 

The MAX-SAT problem is one of the major problems in the field of Boolean satisfiability 

(SAT). We can formulate it as the problem of finding an assignment for the Boolean variables 

that satisfies the maximal number of clauses for a given Boolean propositional formula. The 

MAX-SAT problem is the subject of numerous studies including the annual competition for 

the best SAT and MAX-SAT solver (see www.maxsat.udl.cat). 

The recent state-of-art MAX-SAT solvers can be classified into two main categories: 

branch-and-bound solvers and satisfiability-based solvers, for more details see
1
. The most 

competitive exact branch and bound algorithms for solving the MAX-SAT problem are 

developed on the concepts and ideas found in
2
, 

3
, 

4
, 

5
, 

6
, 

7
, 

8
, 

9
, 

10
, etc. 

In this paper we present the application of Sedimentation Algorithm (SEDA) to the MAX-

SAT problem. SEDA is a general combinatorial branch and bound algorithm developed by 

the author for solving optimisation problems. Originally, it was developed to solve the Berth 

Allocation Problem (BAP), see
11

. A problem can be solved by SEDA if it can be formulated 

(modelled) by the certain parameters, functions and procedures required by SEDA. The 

efficiency of SEDA depends heavily on the way a problem is modelled. Here we present two 

such SEDA modellings for solving the MAX-SAT problem: Clause Modelling (CM) and 

Variable Modelling (VM). In addition to pure CM, we also consider CM plus the Pure Literal 

Rule (CM+PLR) to illustrate the increase in the efficiency of SEDA when an additional look-

a-head technique is included. Our experimental results prove the superiority of CM+PLR over 

CM and VM. In the present form CM+PLR is not comparable with the state-of-art MAX-SAT 

solvers. Some additional refinements of CM and some more sophisticated estimation of the 

lower bound of true clauses is needed to increase the efficiency of SEDA in order to be 

comparable with the state-of-art MAX-SAT solvers. 
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The rest of this paper is organized as follows. First, we introduce our notation and 

explain the MAX-SAT problem in Section 2. In Section 3, SEDA is described. In Section 4 

CM, CM+PLR and VM are described. Experimental results are presented in Section 5. 

Finally, Section 6 contains concluding remarks and directions for future research. 

2  MAX-SAT PROBLEM 

2.1  Formulation of the MAX-SAT problem 

For a given set of Boolean variables },,...,{ 1 nxxV  the variable ix  may take values 0  (for 

false) or 1  (for true). A literal il  is the variable ix  or its negation ix . A clause is a 

disjunction of literals. A propositional formula  is in conjunctive normal form (CNF) if it is 

a conjunction of clauses.  

An assignment v  is a function }.1,0{},...,1{: nv  The variable ix  is true in the 

assignment v  if ,1)(iv  and similarly we say that the variable ix   is false in the assignment 

v   if  .0)(iv  For our convenience we will use notation ).(ivvi  

Maximum Satisfiability Problem (MAX-SAT) is the problem of finding an assignment v  

that maximises the number of true clauses in CNF formula . If the clauses are restricted to 

have exactly k  literals, we get the MAX-kSAT problem. In this paper we will particularly 

examine the MAX-2SAT and MAX-3SAT problems. MAX-SAT and MAX-kSAT are NP-

hard problems with 2k . 

2.2  Solving the MAX-SAT problem 

Solving the MAX-SAT problem for the given CNF formula ,  consists of finding an 

assignment v  that maximises the number of true clauses in . Since the formula  is in 

CNF, it can be presented as: lcc ...1 , where ic  are the clauses of the given formula 

. If the clause ic  is true in the assignment v  we will denote it as ,1)( icv  and similarly 

0)( icv , if it is false in the assignment v . After the introduction of the notation above we can 

formulate the objective function for solving the MAX-SAT problem as: 

Maximise 

l

i

icv
1

)( ,  for the given formula lcc ...1  and all the possible assignments v .      (1) 

From the expression (1) we can easily conclude that the sequence nvv ,...,1 , represents the set 

of decision variables for the MAX-SAT problem. 

3 THE SEDIMENTATION ALGORITHM 

Sedimentation Algorithm (SEDA) is a general combinatorial optimisation algorithm 

introduced for the first time by the author in [5] for solving the Berth Allocation Problem 

(BAP). In this work it is presented in a more general form. SEDA belongs to the class of 

branch-and-bound algorithms, which uses the backtracking mechanism combined with some 

look-a-head techniques for the exact solving of optimisation problems. Here we present a 

recursive variant of the algorithm suitable for the maximisation type of problems. It is the 
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matter of straightforward modification to adopt the algorithm for minimisation type of 

problems.  

In order to solve a problem by SEDA first we need to present the problem’s model in the 

form required by SEDA. The problem modelling consists of: input parameters, internal 

structures, functions and procedures as listed and described in subsections 3.1, 3.2 and 3.3. 

After the problem modelling, SEDA will work as it is represented in Subsection 3.4.  

3.1 SEDA input parameters 

The SEDA input parameters are following: 

},...,{ 1 leeE     a set of decision variables. For the work of the algorithm it is sufficient to 

pass only the number of the decision variables l . 

},...,{ 1 lDDDom    the set of domains (possible values) of decision variables. SEDA will 

work only if the domains of the decision variables iD , for each },...,1{ li  are finite 

sets. 

),(     the pair of heuristic functions set and values ordering . Set },...,{ 1 l   

consists of heuristic functions },,{: RNDii  for each decision variable ie . 

For any two members iDba, , numbers ),(ai and ),(bi measure which value of 

decision variable ie is better: a  or b , in the -th step of solution construction (after 

the 1 decision variables’ values have been determined). The value a  will be better 

than b if ),(),( ba ii . Usually is a real number ordering:  or . 

},...,1{},..,1{: ll     the order in which decision variables are determined. The initial 

value of the  is a permutation of the set },..,1{ l . The algorithm determines a value for 

the decision variable )1(e , then a value for the decision variable )2(e , etc. When a 

value is determined for the last decision variable )( le ,  then the sequence lee ,...,1  is a 

feasible solution of the problem. 

f    the objective function, depending on the values of decision variables, i.e. ),...,( 1 leef . 

We assume that the objective function can be represented as: 

l

i

iil efeef
1

1 )(),...,( ,        (2) 

where functions )( ii ef  are nonnegative for each },...,1{ li . SA can significantly 

reduce the solution space and speed up its running time if iif , for each },...,1{ li . 

Unfortunately, in the case of MAX-SAT this is not true, therefore the part of SEDA 

dealing with this case will not be presented in the paper. 

3.2 Internal structures used by the SEDA 

Internal structures used by SEDA are the following: 

m    the sequence in which the values of decision variables with the current best value of 

the objective function are kept during the work of the algorithm. This is the sequence 

where current best solution is kept. 
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maximum    the variable where value of the objective function is kept for the current best 

solution. The value of the variable maximum  is completely determined by the value of 

the sequence m , i.e. ),...,( 1 lmmfmaximum . 

   the counter of the decision variables. We will also refer on variable  as a 

construction step counter. 

3.3 Functions and procedures used by the SEDA 

Procedures used by SEDA are the following: 

),on(FindSoluti Dom     the recursive procedure which finds the value for the decision 

variable )(e , in the domain set DomD )( ,  and then proceed until a feasible 

solution is reached. The procedure will be described in more details in Subsection 3.4.   

),(Estimation Dom     the function which estimates the value of the objective function 

over the decision variables domain sets in Dom . If the values for the first 1  

decision variables in the  ordering are determined i.e. values are determined for 

},...,{ )1()1( ee , then the function ),(Estimation Dom  can be represented as: 

.)stimation(NonDetVarE)(),(Estimation
1

1

)()(

i

ii efDom  (3) 

The sum in (3) is calculated according to the objective function (2) for the decision 

variables with determined values: },...,{ )1()1( ee . For the decision variables with still 

undetermined values },...,{ )()( lee  we use the function )stimation(NonDetVarE  to 

estimate maximal possible value to approximate objective function f . The quality of 

the approximation highly effects the SEDA running time. 

),Sediment( a     the function which propagates the assignment of a  to the decision 

variable )(e  in the domains of the undetermined decision variables: 

},...,{ )()1( lDD . Also, it applies various general and problem specific look-a-head 

techniques for further reduction of  },...,{ )()1( lDD . Upon the “sedimentation”, the 

function returns the new value to the set of domains. The name of the algorithm was 

inspired by the procedure resembling the natural phenomenon related to the 

sedimentation of particles in fluids. 

)tion(ReportSolu     the procedure which checks if the new feasible solution is better i.e. 

it has higher value of the objective function f , than the current best solution. If this is 

the case, then it becomes the new current best solution and it is saved in the variable m  

and its objective function value is saved in the variable maximum . 

),,Minx( D     the function returns the element of the set D  with the minimal value, 

in the terms of the relation , of the function , i.e. it returns Da  so that: 

),(),()( xaDx  (4) 
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3.4  SEDA description 

The pseudo code of the SEDA is given in the Table 1. It consists of the two parts: the main 

body of the algorithm, lines [16] – [20] and the procedure ),on(FindSoluti Dom , lines [2] – 

[15]. 

In the main body of the algorithm the variables described in Section 3.1 and 3.2 are 

initialised, lines [16] – [18]. Then procedure ),1on(FindSoluti Dom  is called in line [19]. This 

procedure recursively determines the values of decision variables, starting from )1(e , then 

)2(e until )( le  is reached. After examining all possible values for decision variables the value 

of the objective function for optimal solution is stored in the variable maximum . Optimal 

solution itself is stored in the sequence m , as it is described in Section 3.2. At the end the 

values m  and maximum are returned from the main body of the algorithm, line [20]. 

As previously mention, the procedure ),on(FindSoluti Dom recursively examines the 

solution space. In order to describe how it works, let us suppose that the values of decision 

variables },...,{ )1()1( ee  are determined. The procedure input variable Dom  is the set of 

decision variables domains },...,{ 1 lDD . We assume that these domains are consequent with 

the values of the decision variables },...,{ )1()1( ee . The next decision variable for which 

values are going to be examine is )(e .  

In the line [3] the original values of the whole set of domains Dom  is saved in the 

auxiliary variable mDo . Also, in particular, the value of the domain )(D  is saved in the 

auxiliary variable D , line [4]. If necessary, the algorithm will examine all the elements of the 

set D  as the potential values of the decision variable )(e . After examining a particular value 

Da , that value is removed form D . Therefore, the algorithm examines values for the 

decision variable )(e  while 0D  and there is a chance to improve our current best solution 

i.e. maximummDo ),(Estimation , in the while loop lines [5] – [14].  

In the line [6] we select the element of the set D  with the minimal value, in the terms of 

the relation , of the heuristic function )(  as the value of the decision variable )(e . The 

efficiency of SEDA will heavily depend on the manner in which element of the set D  with 

the minimal value of the heuristic function )(   is selected. After the selection, the value is 

removed from the set D  in line [7]. The selection of the value for the decision variable )(e  

will have consequences on the domains of decision variables yet undetermined: 

},...,{ )()1( lDD . These consequences are handled by the call of the ),Sediment( )(e  

function in line [8] which returns new value for decision variables domains. Notice that only 

the domains of yet undetermined decision variables may be changed. 

Since, the value of the decision variable )(e  is determined and all the consequences are  

reflected in the domains of yet undetermined decision variables it is befitting to estimate  

the new maximal possible value of the objective function f  again. If the condition 

maximumDom),1(Estimation  is true, the check of the new current best solution in line 

[10] is performed by calling procedure )tion(ReportSolu . If l , we proceed with the 
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examination of the next decision variable by procedure call ),1on(FindSoluti Dom in line 

[11]. 

Finally, the original value of the decision variables domains is restored in line [13] in order 

to examine the remaining values for the decision variable )(e . 

The backtracking mechanism of SEDA is “hidden” by the recursive formulation of the 

procedure ),on(FindSoluti Dom . The non-recursive formulation of SEDA is more complex, 

but also more efficient. This is why the recursive formulation of SEDA was used to describe 

the algorithm in this section and non-recursive implementation of SEDA for experimental 

results in Section 5. The transformation of any recursive function or procedure to a non-

recursive one is, more or less, a technical matter. Therefore, the description of non-recursive 

SEDA is omitted from this paper.  

 

1 SedimenatationAlgorithm( l , Dom , ),( , , f ) 

  
2 procedure ),on(FindSoluti Dom  

3 DommDo  

4 )(DD  

5 while 0D  and maximummDo ),(Estimation  then 

6 ),,Minx( )()( De  

7 }{\ )(eDD  

8 ),Sediment( )(eDom  

9 if maximumDom),1(Estimation  then 

10 )tion(ReportSolu  

11 if l  then ),1on(FindSoluti Dom endif 

12 endif 

13 mDoDom  

14 endwhile 
15 end 

  
16 lie ,...,1|0  

17 lim ,...,1|0  

18 0maximum  

19 ),1on(FindSoluti Dom  

20 return },{ maximumm  

21 end 

Table 1: The Sedimentation Algorithm 

The described SEDA is a totally correct algorithm
11

 i.e. it halts and it always provide correct 

answer. 
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4  MAX-SAT MODELING FOR SEDIMENATATION ALGORITHM 

There are two ways of the MAX-SAT modelling to fit the SEDA framework. In the first 

modelling (CM) decision variables will correspond to the clauses of the CNF formula and in 

the second (VM) decision variables will correspond to the variables of the CNF formula 

(VM). Using the notation introduced in 2.1 we describe both modelings. 

 

4.1  MAX-SAT clause modelling 

A CNF  can be represented as lccc ...21 , where ic  are the clauses for each 

},...,1{ li . For each clause ic  we will introduce a decision variable ie . Thus, the set of 

decision variables will be },...,{ 1 leeE . 

Let  kpppc ...21  be any of the clauses from the formula . By the definition of a 

clause: ip , is a literal for each },...,1{ ki . We assume that literals ip , for },...,1{ ki  are 

sorted by the number of occurrences in the formula  in a descending order. The clause c , 

will be either true or false. If it is true than at least one of the literals ip , for },...,1{ ki is true, 

if it is false, then all ip , for },...,1{ ki  are false. In order to solve the MAX-SAT problem for 

the formula , we have to examine all these possibilities for each of the clauses. If we 

examine the clause c  in the following way: in the first step we examine formula  if 1p is 

true. In the second step we can proceed with examining the formula  if 2p is true. Since, we 

have already examined formula  if 1p is true, then in the second step instead of examining 

the formula  only if 2p is true, we can examine the formula  if 2p is true and 1p is false. In 

the third step we will examine the formula  if 3p is true and 1p  and 2p are false. From the 

previous procedure of examining the formula  we can generate domain a set c  for the 

clause c  as: 

}0},,...,{},,...,,{},...,,,{},,{},{{ 111213121 kkkc ppppppppppp . (5) 

From (5) we easily define the elements of the set of domains },...,{ 1 lDDDom  as 
iciD , 

for each },...,1{ li . 

The inclusion of the 0  into c  and hence into the domains sets is done to insure the 

completeness of SEDA. Due to the sedimentation procedure the elements of the domains for 

the decision variables will change during the work of SEDA. More precisely, some elements 

from the member sets will be deleted and hence, there is a possibility that 0  appear. 

Therefore, it must be included into the domain sets. 

The heuristic functions },,{: RNDii  for each decision variable ie , },...,1{ li  

are defined as follows: 

.0:

},...,{  :1

},...,1{somefor },,...,,{  :" in soccurrence  ofnumber "

),( 1

11

k

jjj

i pp

k jpppp

 (6) 
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In this MAX-SAT problem modelling heuristic functions are independent of the 

construction step counter . This simplification enables an easier calculation of these 

functions, but distort their heuristic qualities as the construction progress.    

The relation  is defined as , i.e. . As a consequence of this definition SEDA 

will choose more frequent literals to be true when examining whether a clause is true or not. 

The  sequence reflects a descending ordering of clauses from the formula  by the sum 

of the literals occurring in them. 

Finally, we define the objective function f  according to the formula (2) in the following 

manner: 

ki

ij

ii ppcli
epk j

ef ...and},...1{for ,
.otherwise  :0

}),...,1{(  :1
)( 1    (7) 

All procedures and functions introduced in 3.2. except )(Estimation  and ),Sediment( a  

needs no further explanation for the CM of MAX-SAT. 

The function )(Estimation  can be represented as in (3). In the function 

)stimation(NonDetVarE  we use a resolution to estimate the maximal possible value to be 

used for the approximation of the objective function f . The maximal value of the function 

)stimation(NonDetVarE  is lr . We apply the resolution for the limited amount of time 

and each time we derive an empty clause we decrease the value of r  by one. When the 

resolution stops the function returns the current value of r . This procedure is correct, since, if 

from the set of r  clauses we can get an empty clause by applying resolution, then at least two 

clauses of the initial set are not satisfiable at the same time. If we leave one out, then at most 
1r  clauses may be satisfiable. 

First the procedure ),Sediment( a  sets the domains of all clauses with decision variables 

still undetermined to }{a  if they contain at least one common literal with a . These clauses 

will be true because of a , so we can discard all the other possibilities. Also, for these clauses 

hash functions have to be updated accordingly. Furthermore, we negate all the literals from a  

and save them as a . Then we erase all the literals from a in all the elements of still 

undetermined decision variables domains. We can do that since if the elements in a  are true, 

then the elements in a  are false. So, any clause containing a literal from a is not going to be 

true because of the literal being false. During these deletions there is a possibility of empty set 

occurrence. Finally, we rearrange the sequence  from the position 1  to l : in the initial 

part we put those indices with empty sets or singletons decision variables domains and the 

rest follows. In this way we firstly determine the values of decision variables that are 

unsatisfiable (having only an empty set in its domain) or satisfiable with only one set of 

literals. 

The CM of the MAX-SAT problem within SEDA results in an exact branch-and-bound 

type of algorithm for solving the MAX-SAT problem. If we add some additional rules as 

look-a-head techniques to the ),Sediment( a  procedure, we can increase the efficiency of 

SEDA significantly. For example we can add the Pure Literal Rule (PLR), which can be 

formulated as: if a literal il , for some },...,1{ ni  appears in the formula  and il does not, 

than we can assign a il  to be true. The improved CM modelling of the MAX-SAT problem 
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we denoted as CM+PLR. In the Section 5 we shell compare it with the CM and VM of the 

MAX-SAT problem. 

4.2  MAX-SAT variable modelling 

In VM of the MAX-SAT problem for SEDA, for each variable ix , },...,1{ ni  we will 

introduce a decision variable ie . The set of decision variables then becomes },...,{ 1 neeE . 

The domain set for each decision variable in this case is: }1,0{iD , },...,1{ ni . The value 0 

stands for false and the value 1 for true. 

Before defining heuristic functions let us first introduce a function ),,(Simplify vk . This 

function simplifies the CNF formula  if we assign value the v  to the variable kx . The 

sequence of formulas i , },...,1{ ni , are defined in the following recursive way: 

}.{2,...,for),),(,Simplify(

,

)(1

1

n иe
 (8) 

Now, we can define heuristic functions },,{: RNDii  for each decision 

variable ie , },...,1{ ni  as: 

1  :" in soccurrence  ofnumber "

0  :" in soccurrence  ofnumber "
),(

)(

)(

x

x
i  (9) 

The relation  is defined as , i.e. . As a consequence of this definition SEDA 

will choose more frequent literals to be true when examining if a variable should take the true 

or false value? 

The  sequence will reflect a descending ordering of the variables from the formula  by 

the sum of its literals. 

Finally, the objective function f  is defined according to formula (2) in the following 

manner: 

}.,...1{for ,")( if  in clauses  trueofnumber ")( )()()()( nexvef  (10) 

The definition of the functions )( )()( ef , },...1{ n  depends on the stage of the solution 

construction. If we are at the step , then we are determining the value for decision variable 

)(e . We assign the value 0 or 1 to it, hence the value of the function )( )()( ef  will be the 

number of true clauses in  if )()( )( exv . 

Similarly, as in 4.1 only the function )(Estimation  and procedure ),Sediment( a  needs 

some further explanation for the variable modelling of MAX-SAT. 

The function )(Estimation  can be represent as in (3). In the function 

)stimation(NonDetVarE , we use a heuristic function to calculate it. The value of the 

heuristic function is the number of occurrences of a literal (9). If we select that literal to be 

true, then the same value will be also the number of true clauses in the formula after 

previously done simplifications. There are only two possible values in the domains of 
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decision variables: 0 or 1. Thus, we take the maximal value of the heuristic function of for 

these two values to estimate the number of clauses to be true for that decision variable. 

The procedure ),Sediment( a  first propagates ae )(  and then updates heuristic 

functions. Finally, the sequence  is rearranged from the position 1  to l : in the initial 

part we put those indices which have singletons decision variables domains and the rest 

follows. In this way we firstly determine values for pure literals decision variables. 

The variable modelling of the MAX-SAT problem for SEDA is obviously equivalent to the 

Davis–Putnam–Logemann–Loveland (DPLL) algorithm for MAX-SAT. 

5  EXPERIMENTAL RESULTS  

In this section, we present the experimental results of the MAX-SAT problem solved by 

SEDA as it is described in Section 4. We will make comparison between three SEDA based 

modelling of the MAX-SAT problem: 

1. MAX-SAT Clause Modelling (CM) as described in Section 4.1. 

2. MAX-SAT Clause Modelling as described in Section 4.1. plus the PLR added in 

the ),Sediment( a  procedure (CM+PLR). 

3. MAX-SAT Variable Modelling (VM) as described in Section 4.2. 

All the modellings were coded in the Wolfram Mathematica v10.3 programming language. 

Wolfram Mathematica v10.3 interprets instructions and, although it is very convenient for 

algorithm design, it does not execute programs quickly. Therefore, experimental results in this 

paper cannot be directly compared to with the state-of-art MAX-SAT solvers running on the 

compiled versions of program. The tests were conducted on a computer with an Intel Core i7 

Q720 1.60-GHz CPU and 6 GB of RAM running the Microsoft Windows 8 64-bit operating 

system.  

The experimental evaluation is performed on the MAX-2SAT and MAX-3SAT types of 

problems. The test examples for the MAX-2SAT problems have 30 variables and for MAX-

3SAT there are 50 variables. For each problem type 300 formulas with 25, 50, 75, 100, 125, 

150, 175 and 200 clauses were randomly generated. For all the sets we recorded the 

minimum, average and maximum time (out of 300 values) required to find the solution and 

standard deviation. All the running times in the Tables 2 and 3 are expressed in seconds. 
 

Number 

of 

clauses 

MAX-2SAT | 30 variables | 300 randomly generated formulas 

CM CM+PLR VM 

min  avg max σ min avg max σ min avg max σ 

25 0.03 0.06 0.14 0.01 0.01 0.02 0.08 0.01 0.02 0.06 0.09 0.01 

50 0.12 0.47 4.58 0.49 0.06 0.23 1.09 0.16 0.06 0.26 2.29 0.26 

75 0.31 4.64 37.53 4.69 0.22 2.48 13.35 2.08 0.30 9.58 114.50 12.87 

100 1.84 24.18 176.11 20.09 0.80 10.66 36.22 7.28 1.47 64.74 583.08 70.86 

125 6.81 94.85 478.22 64.06 1.89 41.69 177.12 31.88 8.80 208.98 1624.01 220.68 

150 27.11 180.67 712.38 116.06 7.94 85.36 540.57 61.20 27.63 352.66 1767.90 280.64 

175 28.42 278.69 1261.10 179.36 32.35 176.52 696.87 112.00 ― ― ― ― 

200 75.77 386.73 1564.56 226.96 27.64 318.62 1188.21 177.67 ― ― ― ― 

Table 2: MAX-2SAT example with 30 variables 
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From the Table 2 it is evident that both CMs are faster than the VM for the MAX-2SAT 

problem with 30 variables. The VM results for 175 and 200 clauses are not presented because 

the time needed for solving 300 examples was too long. A much better times of the CMs over 

the VM are due to the much more precise )(Estimation  function. As expected the CM+PLR 

is faster than the CM because of additional PLR reduction in the solution space.  

 

Figure 1: MAX-2SAT problem density chart of the CM+PLR for 175 clauses 

The speed up ratio varies from cca 1.21 to 3. This is a good illustration of the effect of a 

single look-a-head technique has on the reduction of the running time. The implementation of 

more look-a-head techniques in the sedimentation phase of the algorithm and more precise 

estimation function would most definitely result in the further reduction of running times. The 

inclusion of the replacement of almost common clause rule, the complementary unite clause 

rule and other rules described in [9] in the sedimentation procedure of CM and VM will be 

the subject of future efforts on the adaptation of SEDA for solving the MAX-SAT problem.  
 

 

Figure 2: MAX-2SAT average running time chart for the CM, CM+PLR and VM 

Notice also that for the CM, CM+PLR and VM standard deviation is lower than the 

average running time. Actually, the sum of the average time and standard deviation is lower 

than the double average time. Therefrom we can conclude that in more than 70% running time 

will be less than double average running time. The density chart of the CM+PLR for 175 

clauses are given in Figure 1. The chart with the average running time of MAX-2SAT 

examples for all three methods is given in Figure 2. 
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Number 

of 

clausas 

MAX-3SAT | 50 variables | 300 randomly generated formulas 

CM CM+PLR VM 

min  avg max σ min avg max σ min avg max σ 

25 0.02 0.05 0.08 0.01 0.02 0.02 0.05 0.01 0.05 0.09 0.20 0.03 

50 0.11 0.16 0.33 0.03 0.05 0.09 0.16 0.02 0.11 0.25 0.45 0.07 

75 0.22 0.30 0.53 0.05 0.12 0.21 0.35 0.04 0.17 4.93 216.14 21.16 

100 0.34 0.52 1.05 0.13 0.23 0.39 0.85 0.08 ― ― ― ― 

125 0.51 0.82 3.57 0.32 0.41 0.69 2.79 0.23 ― ― ― ― 

150 0.63 1.46 17.84 1.44 0.58 1.36 15.75 1.37 ― ― ― ― 

175 0.81 9.38 181.55 21.20 1.21 8.59 135.92 16.99 ― ― ― ― 

200 1.01 59.79 1691.97 123.28 1.04 43.00 371.05 58.30 ― ― ― ― 

Table 3: MAX-3SAT example with 50 variables 

Almost the same conclusion can be made for the MAX-3SAT examples. Nevertheless, the 

CM+PLR is less efficient in MAX-3SAT problem over the CM as the number of clauses 

increase. The chart with the average running time of MAX-3SAT examples for all three 

methods is given in Figure 3.  
 

 
Figure 3: MAX-2SAT average running time chart for the CM, CM+PLR and VM 

6  CONCLUSION 

The first conclusion is that the SEDA, as a general optimisation algorithm, is capable of 

solving the MAX-SAT problem. Considering the two MAX-SAT problem modellings we 

presented here it appears that the CM is more promising. As previously mentioned, this is due 

to more sophisticated estimation of the input formula remaining true clauses during the work 

of the SEDA. Also, it is apparent that the addition of more look-a-head techniques into the 

SEDA sedimentation phase reduces the algorithm running time. The illustration of the above 

is inclusion of the pure literal rule. 

Nether of the modellings have connection between the SEDA heuristic functions and 

objective function. Establishing a connection between them will enable the most efficient 

reductions of the solution space for the SEDA. Therefore, a further work on both modellings 

which will try to establish the connection between heuristic functions and objective function 

is worth trying. 
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Also, neither of the approaches presented here can be directly compared to the state-of-art 

MAX-SAT solvers for two reasons. The first one is the difference in speed between complied 

and interpreted programs and the second one is the lack of more sophisticated concepts for 

solving the MAX-SAT problem.  

The Sedimentation Algorithm offers a good general framework for solving MAX-SAT. 

Still, unless some more sophisticated methods for reducing the solution space or some 

modelling refinements are incorporated, it will not be comparable to the state-of-art MAX-

SAT solvers. Still, the point of this paper is to show that SE is general enough to cover a wide 

variety of problems, while the experimental results show which modelling approaches give 

higher promises. 
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