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Summary. We focus on the study of multigrid method for the solution of the finite volume 

scheme for the diffusion equation. The features of the multigrid method and the adaptation of 

the smoothing procedures to the spectrum of the discrete operators are presented. The 

smoothers are based on Chebyshev’s polynomials and allow us to achieve automatically the 

prescribed convergence rate of the multigrid solver even in the presence of a strong 

anisotropy in the problems. 

1 INTRODUCTION 

We present some results of development of multigrid method for solving three-

dimensional diffusion equations with anisotropic discontinuous coefficients. For 

discretization it is used a convenient seven-point stencil on a Cartesian grid. In the main 

features the proposed algorithm represents an efficient parallel implementation of the 

geometrical multigrid method. A detailed presentation of the multigrid algorithm, which is a 

version of Fedorenko’s method [1–2], can be found in [3–6]. 

The algorithm is intended for solving the stationary diffusion equations and it is able to 

solve the boundary-value problems including semi-definite Neumann problem. Scalability to 

a large number of processors is based on the use of the Chebyshev’s iterations for solution of 

the coarsest grid equations and for construction of the smoothing procedures. 

Two smoothing operators are considered here; see [4–6]. The first one is the Chebyshev 

polynomial, while the second operator is a rational function of the discrete operator. Presently 

special attention focuses on polynomial smoothers due to their high efficiency in parallel 

computing. In addition it is possible to provide desired damping on a preset interval of high-

frequency components by using a sufficiently large degree in the polynomial smoothing 

operators [7–9]. 

For equations with discontinuous coefficients we use so called problem-dependent 

intergrid transfer operators. 

We developed a special procedure to adjust smoothers for achieving the prescribed rate of 

multigrid iteration convergence and present examples, which show that proposed adaptation 

improves the efficiency of the multigrid method even in the presence of a strong anisotropy in 

the problem. 

The need for efficient solutions of such problems is caused by their prevalence in 

mathematical models. Increased interest in this problem is motivated by the development of 

parallel computations: codes for multiprocessor supercomputers are required. The developed 

code ensures scalable simulation on grids with billion (and more) nodes. 
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2 FORMULATION OF THE PROBLEM 

In three-dimensional domain Ω with boundary  we consider a boundary value problem  

    
   in   ,    

( )     on   .

L u f

u n u
    (1) 

Нere L  is a linear elliptic self-adjoint positive semi-definite operator 

0  (  )L u u a u       (2) 

with the coefficients 1 2 3 0{ , , },   0,   0.idiag k k k k a  Strong anisotropy 1 2 3k k k  is 

admissible. The boundary condition (Dirichlet, Neumann, or Robin) is set on , n  is 

outward normal vector to . The coefficients 0( ),   ( ),  ( )  0,  ( )  0,   ( )r f r a r r r  are 

given functions, and ( )u r  is the sought function; ( , , )r x y z . The input data are assumed 

to ensure the existence and uniqueness of a solution of the required smoothness.  

The approximation of problem (1) is not discussed here. Accordingly, for simplicity, we 

use  as a right parallelepiped, in which we introduce a Cartesian grid 

{ ,   0 }h nx n N  with grid boundary h ; the grid h  is non-uniform in each 

coordinate direction and depends on a parameter h  (mesh size) characterizing the average cell 

size.  

The space hU  of functions on h  is defined in the standard manner (with the 2L grid 

inner product and the corresponding norm). On the space hU  we define a difference operator 

hL  approximating the operator L  with the second order of accuracy. To be more specific, it 

can be assumed that the grid functions are given at the nodes of the grid and hL  arises from 7-

point finite volume discretization of the problem (1). The operator hL  is self-adjoint, and its 

eigenvalues  are nonnegative and belong to the real interval min max[ ;  ] . Assume that the 

estimates for the bounds 0min  and mах  of the spectrum of are known; in some cases, they 

can be calculated (see [6]). For the degenerate Neumann problem, the null space (kernel) of 

the operator is a one-dimensional subspace consisting of constant grid functions. In this case, 

= 0min . Then, by min , we mean the lower estimate > 0d

min  for the operator hL  on the 

subspace orthogonal to the nullspace. An estimate for max  is fairly easy to obtain with the 

help of the Gershgorin theorem [10]. 

3 FEATURES OF MULTIGRID METHODS 

3.1 General scheme 

The discrete approximation of problem (1) is written taking into account the boundary 

conditions in the operator form: 

 = ,h h hA u g         (3) 
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where hA  is an N N – matrix, hu  is the desired grid function, and  hg  is a given grid 

function. We define the operator =h hD , where h  is the difference Laplacian (with the 

same boundary conditions as for operator hA ). Assume that, for the operators hA  and hD , the 

constants 1 20 <  in the inequality  

1 2( , )   ( , )   ( , ),  h h h h h h h h hD u u A u u D u u     (4) 

are known. This means the spectral equivalence of hA  and hD . 

Let us briefly describe the main elements of the multigrid method (MM). To solve a 

system of the grid equations (3), we use the MM in a form close to Fedorenko’s original 

method [1–2]. Every multigrid iteration step consists in the transition from a fine grid to one 

of the next level up to the coarsest grid and back (the so called V – cycle). It is convenient to 

describe the main features of the method in a two-grid representation, when there are only two 

grids: fine h  and coarse H . Then the corresponding error propagation operator of the two-

level method has the form [11]: 

 1= ( ) .p H h pQ S I P A R A S       (5) 

Here, hA and HA are the operators on the fine and coarse grids, respectively; P  and R  are 

the intergrid transfer operators from the coarse to fine grid (prolongation or interpolation P ) 

and from the fine to coarse grid (restriction 
*R P ); and pS  is a smoothing operator with p  

pre- and post-smoothing steps. In the algorithm under consideration, the operator HA  is 

constructed via re-discretization of the problem on the coarse grid. The efficiency of the 

algorithm depends on the multigrid triad: the intergrid transfer operators, the algorithm for 

solving the coarsest grid equations, and the smoothing operator pS . The above two-level 

algorithm can be generalized to multilevel ones by recursion. The number of grid levels in the 

MM algorithm is usually rather small (five or six, even we use a large grid with billions of 

nodes). 

The operators P  and R  are described in [8], where along with a trilinear interpolation 

operator P , an interpolation operator based on an approximate solution of local discrete 

boundary value problem is presented. Such operators P and 
*R P are called problem-

dependent and they provide robustness of the multigrid algorithm for equations with 

discontinuous coefficients, see [3]). 

3.2 Coarse grid solution 

On the coarsest grid, a system of linear equations =H HA y g  with  ( )H h h hg R g A u  on 

the right-hand side is solved using the Chebyshev iterative method [12] with parameters j  

(reordered for stability [12, 13]): 

 1 1= ( ), =1,...,j j j

j H Hy y A y g j p  ,     (6) 

where 
0y  is an initial guess, usually, 

0 0y . A number p  of iterations is determined by 

the condition of achieving the prescribed accuracy  according the criterion 0|| ||< || ||,pr r  
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where 0r  and p

p H Hr g A y are the initial and final residuals. An estimate for p  has the 

form (see [12])]: 

 

1 2

min

max

ln 1 1
( , ) , ,    ,

ln 1
p p     (7) 

where min and max are estimated minimal and maximal eigenvalues of the operator HA . 

This iteration process is defined by the Chebyshev polynomial pF  of degree p , that 

deviates least from zero on the interval [ ; ]min max  and is normalized by the condition 

(0) = 1pF . 

3.3 Smoothing procedures 

The smoothing (relaxation) operator pS  specifies the transition from an iterative 

approximation v  to a “smoother” approximation newv . Two smoothing operators = ( )p p hS S A  

are presented here (see [4–6]). The first one is a Chebyshev polynomial of degree p , while the 

second one is a rational function constructed in [14] and called the LIM. Note in the multigrid 

theory a smoothing operator (called the smoother error propagator) is defined by 

1

hS I M A , 

where M  is a smoother. But we work directly with the smoother error propagator and will 

call it as the relaxation or smoothing operator. 

Each such operator is a self-adjoint, and its eigenvalues are the values of the function 

( )pS  on the spectrum of hA . These operators serve to reduce the high-frequency components 

of an initial vector 0e  by the iteration (or smoothing step) 

1 0

pe S e  . 

The function ( )pS  must be small on the high frequency subinterval 
*[ ; ]min max . We 

distinguish high- and low-frequency components of grid functions on h . The separation of 

high- and low-frequencies is done with respect to the coarse grid, and therefore high-

frequency components are not represented on the coarse grid. More strictly, there is a 

decomposition of the space hU  into a direct sum of two invariant subspaces associated to a 

two groups of eigenvalues placed on the low-and high-frequency spectral subintervals s 
*[ ; )min min  and 

*[ ; ]min max  respectively. The left end 
*

min  of the high-frequency spectral 

range 
*[ ; ]min max  is an unknown (in general). The quality of the smoothing procedures 

depends on the choice of 
*

min  and the construction of a smoothing operator S . 

How to define the bound 
*

min  and the smoothing operator = ( )p p hS S A  optimally are the 

key questions and this is addressed this paper. 
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Sometimes we can obtain the exact value *

min  of left end of the high frequency interval. To 

begin with, we consider the classical case when hA  is a discrete Laplacian on a cartesian grid 

in the unit cube and the grid is uniform in each direction. Then the bound separating all the 

eigenfunctions into smooth and nonsmooth ones is associated with eigenfunctions indexed by 

1 2 3(0.5 ,  1,  1),  (1,  0.5 ,  1),  (1,  1,  0.5 )N N N ; here, N  is the number of mesh spacings in 

each coordinate direction, =1,2,3 . The eigenvalues associated with these eigenfunctions 

have the form 

* (1) (2) (3) * (2) (1) (3) * (3) (1) (2)

1 2 3

1 1 1
= ,   = ,    =

2 2 2
max min min max min min max min min  (8) 

where ( )

min  and ( )

max  are the bounds of the difference analogues of the one-dimensional 

operators in the coordinate directions =1,2,3 . This exact bound is * * * *

1 2 3( , , )min min . 

As a relative bound, we take 

 
* * *

1 2 3= ( , , ) maxmin .     (9) 

This bound is exact and takes into account the difference between the spectral intervals in 

the coordinate directions. Such simplest example of such anisotropy can arise, for example, 

when problems are solved in a parallelepiped with sizes differing in different directions by 

many times. Estimate (9) is an extension, to the three-dimensional case, of a rule according to 

which the frequencies 0.5 max in the simplest one-dimensional case belong to the high 

frequency range. In the isotropic d –dimensional case of the Laplacian discretization the 

estimate (9) reads 
* (2 ).min max d  

The estimation (9) is also exact in the case of the considered discretiazion of the problem 

(1), (2) with the constant coefficients ( 1 2 3,  ,  k k k  and 0 ,  a ). Note that the bound 
*

min can be 

obtained if we specify the constants 1 20 <  in inequality (7). Let 
0

max  denote the upper 

bound for hD . In view of the relation 
0

2max max  , we can estimate 
*

min  and η: 

* 0 1
1

2

1 1
 =      ,   = .

6 6
min max max

 

If we do not know 
*

min  in advance we take the bound 
* 6min max  as an initial guess and 

correct automatically this bound in the course of multigrid iterations. We verified (see [7, 8]) 

such an adaptation procedure and describe algorithm of adaptation in this paper. 

We propose two smoothing operators which are related to a first kind Chebyshev 

polynomial ( )pT x  of degree p  that deviates least from zero on the interval [–1; 1] (see [12]): 

 ( ) = cos( arccos ),    | | 1; ( ) = cosh( Acosh ),     | |> 1.p pT x p x x T x p x x    (10) 

To construct such an optimal polynomial for an arbitrary interval ;a b , we make a linear 

change of variables mapping the interval [ 1;1]  to an interval [ ; ]a b . 
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When a smoothing operator is applied, the parameters of the method (degree p of the 

polynomial and the corresponding set of Chebyshev parameters) are chosen to suppress the 

high-frequency residual components with a prescribed accuracy smooth , usually, 0.5smooth . 

We check the reduction of the norm of the entire residual that provides the desired reduction 

of the high-frequency residual components. We can estimate the smoothing factor of the 

operator pS , i.e. the error reduction in the high-frequency space as follows 

 max | ( ) |  1pS         (11) 

where maximum is taken over the interval *[ ; ]min max and p  is degree of the Chebyshev 

polynomial; this parameter defines the number of iterations of the relaxation process. 

3.4 Chebyshev polynomial smoother 

Consider explicit iterations of form (6) with a Chebyshev polynomial ( )pF  that deviates 

least from zero on the high-frequency spectral interval 
*[ ; ]min max  and is normalized by the 

condition (0) = 1pF . The polynomial pF  can easily be expressed in terms of standard 

polynomial ( )pT x  (10). On the entire spectrum, the inequality | ( ) |  1  pF  holds, i.e., this 

smoothing procedure is a converging iterative method. Let = ( , )p p be defined by (7) with 

a given value
*

min max  and a prescribed tolerance smooth . Then the error components 

on the interval 
*[ ; ]min max are decreased by 1 >1 times uniformly over this spectral range 

and the smoother error reduction function  

 ( ) = ( )Cheb pF       (12) 

takes the values  at the extremal points of the polynomial on 
*

min[ ;  ]max . 

The polynomial | ( ) |pF  looks like the ideal smoother. In practice, the situation differs 

from the ideal one and usually we do not know the value 
*

min . The Chebyshev smoothing 

operator turns out to be sensitive to the inaccuracy of specifying 
*

min  (see [4, 8]). For 

example, when 
*

min  is underestimated then the number of smoothing steps grows without 

improving the quality of smoothing. For this reason, we examine another smoothing iterative 

procedure, which is called LIM. In this case, the use of an underestimated value of 
*

min  

improves smoothing and the overall multigrid convergence rate (and as we expect number of 

smoothing iterations grows). Note that LIM is reliable in complicated diffusion problems. 

3.5 LIM smoothing operator 

Define = ( , )p p  by the formula 

 
1= ( 1) 1

4
p     (13) 
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with *

min max  and a prescribed tolerance smooth , (in (13), x  is the least integer 

greater than or equal to x ). Then, to reduce the error by 1 >1 times on the high-frequency 

interval *[ ; ]min max  , we use the LIM smoothing operator  

 2 1= ( ) ( )p hS I G I A .    (14) 

This operator is implemented by the explicit iterative algorithm, see below. Here 

= 2 1p , ( )pG is a Chebyshev polynomial of the first kind that deviates least from zero on 

the interval 0[ ; ]max , where 

2 21
0 1

1

1 1
=   [ 1 ; 0],      = 16 1 ,       = cos ,

1 2
max

max

z
p z

z p
  (15) 

 with the normalization ( 1 ) = 1pG . On the interval [0; ]max , we have . | ( ) |  1pG  and 

| ( ) |  1S , moreover, 0   0pG .  

A function of form (14) was studied in detail in [14] and its construction was based on the 

scheme proposed for numerical solution of parabolic equations in [15]. The polynomial 

( )pG can express in terms of the classical Chebyshev polynomial ( )pT x  (10) (see [14]): 

=

1 1

=1

( )
( ) = ,      ( ) = ( ) ( ( 1) ).

( 1 )

m p
p

p p m p max

mp

H
G H a T z z

H
 

The zeros ,  = 1,...,  ma m p  of the polynomial pH  are the iteration parameters of the 

method and can be expressed in terms of the zeros m  of the Chebyshev polynomial pT : 

 1
max

1

= .
1

m
m

z
a

z
       (16) 

The implementation of the operator (14) is similar to the algorithm (6). The transition from 

an iterative approximation v  to a “smoother” approximation newv  is executed in 

2 1p explicit steps: 

1 11
= {v ( )} ,    =1, , 2 1  

1

m m m

m h h

m

y b y A y f m p
b

 

where an initial guess
0 = vy , the iteration parameters 1 2 1 1 2{ ,..., } { ,..., , ,..., }p p pb b a a a a  and 

2 2= 16 / 1p . The result of this iterative algorithm is a smooth approximation to the 

solution:
2 1v = p

new y . 

The spectrum of smoothing operator (14) is given by the formula 

21 ( )
( ) =

1

p

LIM

G
.      (17) 
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By the construction of pG , we have the following inequality for the damping factor: 

 
1

0 ( ) .
1

LIM        (18) 

On the right end of the spectrum, damping is faster than with the Chebyshev smoothing 

operator (12)and is determined by the factor 

 
2

2
( )  

16
LIM max

p
       (19) 

On Fig. 1 the damping factors for both smoothing functions (12) and (17) are shown. 

Spectral interval is normalized in such a manner, the normalized upper bound 2

max maxh  

equals 12. The Chebyshev polynomial Cheb(p)  is optimal for 
* 0.3min  with 7p  and 

0.5smooth . For comparison the LIM function is taken for 4p  in order to be eqivalent to 

2 1 7p explicit steps; damping factors correspond to 0.5  at 
* 0.3min  and 0.04  at max  

(with respect to (19)). 

 

Figure 1. The damping factors for smoothing operators 

Example 1. Consider the Poisson equation in a unit cube. Neumann boundary conditions 

are imposed. The function f  (right hand side) is determined by the given solution 

1 2( , , ) = (cos cos )u x y z l x l x 1 2 (cos cos )m y m y 1 2(cos cos ),n z n z  where 1 1 1= = = 2,l m n  

2 2 2= 4,   = 8,    = 16l m n . 

Five grid levels and an identical number of smoothing steps at each level are used. When 

comparing the smoothers, we took into account that, for given p  in ( )LIM p , the number of 

smoothing steps is = 2 1p . 
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The numerical results are characterized by the number m  of multigrid iterations, CPU 

time, and the convergence rate 1= || || || ||m mr r  where 1mr  and  mr  are the residuals. The 

convergence is achieved if 0|| ||< || ||mr tol r  with prescribed tolerance 7=10tol . The solution 

of the Neumann problem with smoother ( )Cheb p  at  2p  takes  9m  multigrid iteration 

steps, regardless of the grid size 3 3 3 332 ,  64 ,  128 ,  512N . The average convergence rate is 

0.167 , which are higher than the theoretical convergence rate 0.20  of the method in 

the two-grid representation with two pointwise relaxation steps [13]. 

Let us present a typical situation which simulates ifluence of uncertainces in determination 

of *

min on convergence characteristics of the multigrid algorithm. Consider three values of 
* :min  20, 6, 1.5max max max . Table 1 presents the numerical results for the Neumann 

problem on the grid of 3512  nodes with indicated values *

min . 

 Chebyshev, = 3p  LIM,  = 3  

*

min  m   ,time s   m   ,time s  

/ 6max  8 0.126 188 9 0.155 234 

/ 20max  9 0.157 212 9 0.155 234 

/1.5max  12 0.243 280 9 0.155 234 

Table 1. Convergence characteristics of the multigrid for various 
*

min  

We compare the smoothing procedures Cheb(3) and LIM(2) (with the number of 

smoothing steps given by   2 –  1 3p ). The time costs of smoothing in these two 

procedures are identical. For `this problem, the exact value of 
*

min  is known: 
* 6min max . 

In this case, the Chebyshev smoother ensures a higher rate of convergence than LIM. For 

other two cases 20, 1.5max max  it can be seen that, for the Chebyshev smoother, the 

inaccuracy slows down the convergence rate. In contrast to the Chebyshev smoother, the 

quality of LIM is independent on the given range of 
*

min . 

For a problem with strong anisotropy both smoothing procedures require some estimations 

of 
*

min  or implementation of the adaptive technique described below. This technique is based 

on analysis of multigrid convergence history, and is implemented by monitoring the 

convergence of the smoothing procedure and the convergence of the overall multigrid solver 

on each multigid iteration as well as. 
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3.6 Adaptation of smoothers to the spectrum of operators 

Adaptation is performed by improving the lower bound *

min  of the high-frequency interval 

*[ ; ]min max  for each grid level. This improvement can allow us to achieve automatically 

better smoothing properties and the best possible rate of multigrid convergence. 

Suppose that, in the course of few multigrid iterations, after p  smoothing steps with a 

given tolerance smooth , the given bounds 
*

min  and max  corresponding to the current grid 

level, the relation 0=|| || / || ||pr r  is obtained for the initial 0r  and final pr  residuals. If < 1  , 

for the Chebyshev smoother, inverting the formulas of form (7), we find the new lower bound 

2
1/

* 1 21
1

1

1
= , = 1 .

1

p

min max    (20) 

For the LIM smoother, using (15) and (18), the value of 
*

min  is updated using the formula 

 
2

* 1

2
= ( 1) .

16
min max

p
      (21) 

Based on (20) and (21) we elabarated the rather sophisticated procedure which provides 

updating the bounds of the high frequency spectrum. We compute the optimal 
*

min  not only 

by monitoring the convergence of the smoothing procedure, but also the convergence of the 

overall multigrid solver on each multigid iteration. This technique provides to achieve 

automatically the multigrid convergence rate 
2

smooth . This relation is expected on the basis 

of the analysis of two-grid representation (5). 

Anisotropy test case. Consider the equation (1) in a unit cube with diffusion coefficients 

1 2 3,  ,  k k k , included strong anisotropy 1 2 310000,  100,  1k k k , see Table 2. The right 

hand side is 

3100,   ( , , ) in cube [0.2; 06] ,
( , , )

0  ,    out .

x y z
f x y z  

Dirichlet boundary conditions are imposed: 0u  on . 

Five grid levels are used. The numerical results are characterized by the number m  of 

multigrid iterations, total number p  smoothing steps on the fine grid and the average 

convergence rate 
1

0= (|| || || ||) m

mr r , where 0r  and  mr  are the initial and final residuals. The 

convergence is achieved if 0|| ||< || ||mr tol r  with the prescribed tolerance 6=10tol . Instead of 
*

min  we characterize spectrum separation by relative spectral bound
*

min max . 

Table 2 presents the numerical results for computations on the grid of 3128  nodes. We 

compare the smoothing procedures Cheb and LIM with and without adaptation procedures. 

The goal of an adaptation procedure is to adjust
*

min  in order to achieve automatically better 

smoothing properties and possible to guarantee the prescribed rate of multigrid convergence. 
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For different choice of the diffusion cotfficients 1 2 3,  ,  k k k  we consider three variants of 

smoothing strategy: 

 Var0: without adaptation, a given relative bound 1/ 6 , 

 Var1: without adaptation, a given relative bound exact , 

 Var2: with adaptation, an initial relative bound 1/ 6 . 

Here exact  is given by (9) and for four cases 1 2 3,  ,  k k k  (see Table 2) this value exact  is 

equal 5.0 03,   2.6 03,   1.7 00.   417, e e e  respectively. In process of adaption we compute 

the relative bound 
adjust

 which is close to the best bound exact , see Table 2. 

 

1 2 3,  ,  k k k  Smoothing strategy 

Chebyshev LIM 

m ; p ;  m ; p ;  

1; 1; 1 
Var0 

Var2 

8; 32; 0.15 

7; 38; 0.12 

8; 48; 0.15 

8; 48; 0.15 

100; 1; 1 

Var0 

Var1 

Var2 

5.0 03exact e  

240; 960; 0.94 

10; 200; 0.22 

13; 194; 0.32 

5.5 03
adjust

e  

202; 1212; 0.93 

7; 294; 0.12 

13; 338; 0.32 

6.3 03
adjust

e  

100; 100; 1 

Var0 

Var1 
Var2 

2.6 03exact e  

431; 1724; 0.97 

9; 234; 0.19 
13; 240; 0.34 

3.0 03
adjust

e  

362; 2172; 0.96 

6; 348; 0.09 
13; 430; 0.32 

4.0 03
adjust

e  

10000; 100; 1 

Var0 

Var1 

Var2 

1.7 04exact e  

stagnation 

8; 816; 0.17 

15; 854; 0.39 

2.0 04
adjust

e  

stagnation 

4; 936; 0.03 

15; 1570; 0.40 

3.0 04
adjust

e  

Table 2. Convergence characteristics of the multigrid for the coefficients 1 2 3,  ,  k k k . 

Adaptation can increase or reduce the number of smoothing steps at every grid level. The 

lower bound of the operator on the coarsest grid can be improved in a similar manner.  

In the computations, the adaptation of the smoothers improves the convergence rate of the 

multigrid algorithm, but the adaptation procedure has a few tuning parameters and further 

investigation and experimental verification is required to enhance robustness, which goes 

beyond the scope of this paper. 

24



O.B. Feodoritova, N.D. Novikova and V.T. Zhukov 

4. CONCLUSION 

We proposed an adaptive technique based on analysis of convergence history which 

provides efficient design of smoothers with optimal smoothing factors. This technique allows 

us to achieve automatically the prescribed convergence rate of the multigrid solver. The 

computations confirm that the adaptive technique is a useful tool in designing efficient 

multigrid algorithms improves the efficiency of the multigrid method even in the presence of 

a strong anisotropy in the problems. Here, this technique is applied on structured Cartesian 

grids but we believe that such approach will be useful for unstructured grids and for algebraic 

multigrid as well. The proposed multigrid algorithm is implemented successfully on parallel 

computers. 

This work was supported by the Russian Foundation for Basic Research, project № 14–21–
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