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Summary. The article is devoted to solving the direct and inverse problems of sounding 
the ionosphere. Parallel numerical methods and fast algorithms for multiprocessor computing 
system with common control were developed in order to increase the efficiency of solving 
these problems. This approach allows to solve the problems in chosen classes of ionospheric 
models in real time and within errors of measurement. 
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1 INTRODUCTION 

An inverse problem of ionospheric sounding, i.e. reconstruction of the space structure of 

the electron concentration, belongs to the class of ill-posed problems of mathematical physics. 

According to paper1 the solution of the problem is defined uniquely. The research task is to 

construct a very complex picture that preserves stability with respect to errors of measurement 

by the given experimental information. It is clear that the more information is contained in the 

experimental data the more complicated structures it allows to recognize. For processing big 

volumes of data in real time, it is required to increase the efficiency of solving the posed 

problems. One of the directions for solving this problem is the development of fast algorithms 

which are based on the technique of parallel computations. For arbitrary structure of the 

ionosphere, the inverse problem can be solved by numerical search methods based on multiple 

solutions of the direct problem and the application of regularization2. 

Here we will mention two methods of solving the direct problem 

1. By using piecewise-analytic solutions for the trajectory parameters of the signal3.

2. By using numerical methods for solving a system of ordinary differential equations.

We choose the second method in order to avoid a restriction on the class of solvable 

problems. 

2 STATEMENT OF PROBLEM 

We consider the problem of radiowave propagation in anisotropic-inhomogeneous 
ionosphere in geometrical optics approximation. This problem is described by the system of 
trajectory equations 
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where �̅ is the vector of the signal path coordinates, �̅ is the normalized wave normal vector, � 
is the dielectric constant, � is the group path and 
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The dielectric constant � with negligible small quantity of trajectory absorption is defined as 

� = 1 − 2�(1 − �) �2(1 − �) − � sin� � ± � �� sin� � + 4�(1 − �)� cos� ��
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where � = ��
�/�� and � = ��

�/�� are non-dimensional parameters, �� is the plasma 

frequency, �� is the gyrofrequency of electrons, �  is the wave frequency, �� is the vector of 
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magnetic field of the Earth, � is the angle between �̅ and ��. The form of the system of the 

equations was obtained by method of characteristics from the eikonal equation4,5. 

The Cauchy problem of ionospheric sounding is a problem of finding the characteristics 

of the signal trajectory by solving (1) with given initial output point and the elevation angle of 

a signal. 

The adequacy of the solution of (1) was verified by comparing computed signal 

parameters for an isotropic quasi-parabolic ionospheric model with the correct values of 

trajectory parameters calculated by analytic expressions of group path and distance of signal 

propagation for the same model of the ionosphere. For different sets of parameters for the 

quasi-parabolic ionosphere model, the error of computation of the trajectory characteristics (1) 

is the tenth part of a percent. The direct boundary value problem of sounding the ionosphere is 

finding of signal trajectory characteristics (the group path and the elevation angles) on one-

jump sounding trace with fixed bounds and given space structure of electron concentration. 

Usually this problem is solved by the shooting method. 

Solution of the inverse problem of ionospheric sounding defines the space distribution of 

electronic concentration by radiosounding data (vertical and oblique sounding data). 

In order to solve the inverse problem of the composite radiosounding of the ionosphere in 

accordance with vertical and oblique-incidence sounding ionograms, we were using the 

ionogram of vertical sounding at the end of the oblique-incidence sounding trace to construct 

the best approximation of the profile of the initial vertical distribution of the electron 

concentration. The inverse problem of ionospheric sounding, i.e. the reconstruction of the 

space structure of electron concentration, belongs to the class of ill-posed problems of 

mathematical physics. For solving this problem we use the Tikhonov regularization method1,2.  

The space distribution of electron concentration is given as the class of parametric 

models of the ionosphere. For solving the inverse problem of sounding the ionosphere by the 

Tikhonov regularization method1 we introduce a smoothing functional  
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which should be minimized. Here 
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is the stabilizing functional. The numerical parameter � is called the regularization parameter. 

It regulates relations between the functionals �� and Ω. The coefficient � in �� is the 

normalizing factor, � = 1/��  where � is the path length. ��
� = �(��, ��(�, �)), � = 1, ⋯ , � 

are the experimental values of the group path for fixed sounding frequencies �� and the given 
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quasi-experimental two-dimensional model of the electron concentration ��(�, �); ��
� =

�(��, ��(�, �)), � = 1, ⋯ , �, are the values sought of the group path for the same sounding 

frequencies and the �-th iteration of the search two-dimensional electron concentration model; 

��
�  and ��

�  are the angles of departure and arrival, respectively, and satisfy the boundary 

conditions for the frequency �� with the given quasi-experimental model ��(�, �); ��
�  and ��

�  

are the angles of departure and arrival of the ray for the same frequency and the �-th iteration 

of the search model, which satisfy the boundary conditions; � is the height; � is the distance 

along the path; � is the number of trajectory rays used.  

The vector of the medium parameters 
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consists of variables defining the sectors �� along the trace and the variables ��
�
 defining slope

of the isolines bounding the sectors ��
��(�, �) from above and below. Uniform convergence or 

divergence of the isolines is provided inside each section by linear interpolation of respective 
coefficients. The isolines have no left and right discontinuities at the boundaries of the sectors 

��
��(�, �). This ensures continuity of ��(�, �). Uniqueness of ��(�, �)is provided by 

restrictions on ��
�
 that exclude intersections of the bounding isolines inside the sections

��
��(�, �) during the solution search. Given approach for construction of the function 

��
��(�, �)  allows to approximate any inhomogeneous structure of the ionosphere 

corresponding to the selection of sectors ��
��(�, �). In our case the functional Ω allows to 

choose the solution from the set of exiting equivalent solutions that changes most slowly 

along the path, in other words, with minimum values of ��
�
.

3 FAST ALGORITHMS 

We consider two ways of development of fast algorithms for solving posed problems 
using multiprocessor systems.  

In the first approach the algorithm is realized on multiprocessor computing systems as 
following: input of each processing element is given as a vector of input parameters and is 
common for all processing elements, the chain of commands is realized by sequential 
algorithm of posed inverse problem. Since the algorithm of solving the inverse problem is 
based on multiple time of solving of the direct problem given by system (1) the increase of the 
number of the processor elements cannot increase the speed of solving the inverse problem.  

The second approach takes into account the specific character of considering problems, 
namely, the form of the system of equations, numerical methods by which these problems are 
solved. It is found that the sequential algorithm of solving of the given problem has “vector” 
parts. This property yields to intrinsic parallelization using homogeneous multiprocessor 
system.  

We compared both algorithms and it was obtained that the second parallel algorithm for 
given class of problems is faster.  
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Here we describe fast algorithms for the direct Cauchy problem, direct boundary problem 

and inverse problem according to the second approach. 

We rewrite system (1) in a vector form 
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Parallel algorithms of solving the direct Cauchy problem are based on simultaneous 

solving of all equations of the vector system. In this case it is enough to use only one segment 

of a computing field of a homogeneous multiprocessor (eight processing elements (PE): six 

PEs are used for solving the system, two PEs - for computing the system coefficients). 

Segment of the computing system 

        .         . . .    

Fig.1. Parallel algorithm for solving the direct Cauchy problem 

The parallel algorithm for solving the direct Cauchy problem parallelizes independent 

procedures of the sequential algorithm: procedure of numerical method for solving the system 

of trajectory equations (1), procedure of finding the right-hand sides of the system, procedure 

for finding the index of reflection �. The possibility of application of the standard parallel 

numerical method of solving of ordinary differential equations systems in more general cases 

was studied and the preference of the constructed parallel numerical method was obtained. 

For solving the boundary problem we consider a parallel numerical shooting method 

(similar to the standard shooting method). For a fixed signal frequency we set the series of � 

different angles of elevation and realize the parallel algorithm of the direct Cauchy problem 

on each of � segments of multiprocessor computing field. If � ≥ 4 then it is found that 
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usually one step of parallel shooting method is enough to find the angle of elevation which 

satisfies the given signal frequency.  
For efficiency of solving the inverse problem of sounding the ionosphere we developed a 

parallel algorithm oriented on a particular architecture of a multiprocessor computing system 
consisting of several homogeneous multiprocessors. The parallel numerical method of 
minimization of the residual functional was realized on all multiprocessors of the system; the 
parallel numerical method of solving the direct boundary problem was realized on each 
multiprocessor; and the parallel algorithm of solving the direct Cauchy problem was realized 
on each segment of computing field on all multiprocessors.  

Remark. A computing system consists of � multiprocessors, each multiprocessor 
consists of � segments, and each segment consists of 8 processing elements (PE). 

Our algorithm was realized on a computing system which in general can be described as 
following: 

Computing field of multiprocessor 

      

       . . .  . . .  

    

Fig.2. Parallel algorithm for solving the direct boundary problem 

Computing system 

 

. . .. 

Fig.3. Parallel algorithm for solving the inverse problem 

4 EXAMPLE OF SOLVING THE INVERSE PROBLEM 

The fast algorithms of solving the direct and inverse problems of ionospheric sounding 

were realized in the case of isotropic approximation for reconstruction of two-dimensional 
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inhomogeneous structure of the ionosphere on homogeneous multiprocessing system with 

computing field consisting of one segment.  

The developed algorithms were tested for reconstruction of quasi-experimental 

heterogeneities which were synthesized for the specific realizations of the two-dimensional 

section of the International Ionosphere Model provided by IRI. 

The class of parametric models of the two-dimensional ionosphere was defined as a class 

of piecewise linear approximations (in the spherical coordinates) of the electron concentration 

function providing continuity and uniqueness of the plasma frequency function in the 

sounding area. The algorithm for solving the inverse problem uses the vertical distribution of 

electron concentration on both ends of the sounding trace and is synthesized with 

characteristics of oblique sounding - group delay and angles of elevation on the trace ends. 

The class of multi-parametric ionospheric models was constructed as the class of functions 

with piecewise-linear variation of values of the electron concentration function on each 

interval of partition of the ionosphere model along the trace. The isolines of the electron 

concentration of approximating ionosphere were almost the same as isolines of electron 

concentration of the quasi-experimental model. 

Using the data of the complex experiment of vertical and backscatter oblique sounding 

we obtained the estimate of two-dimensional structure. The algorithm of solving the inverse 

problem uses as initial data the ionograms of vertical sounding on both ends of the trace and 

the frequency characteristics of group delay of oblique sounding. The ionograms of vertical 

sounding on the trace ends were used for the best approximation of the vertical profile of 

electron concentration distribution which then becomes fixed. Three types of experimental 

data were analyzed for reconstruction of real structure of the ionosphere in accordance with 

composite experimental data of vertical and oblique sounding: homogeneous, weak-

inhomogeneous and strong-inhomogeneous ionosphere structure along the sounding trace. 
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