Dedicated to our Professor and friend Dr. V. I. Gavrilov on the occasion of his 80th birthday

A SHORT SURVEY OF THE IDEAL STRUCTURE OF PRIVALOV SPACES ON THE UNIT DISK

ROMEO MEŠTROVIĆ* AND ŽARKO PAVIĆEVIĆ**

* Maritime Faculty University of Montenegro 85330 Kotor, Montenegro e-mail: romeo@ac.me

** Faculty of Science University of Montenegro 81000 Podgorica, Montenegro e-mail: zarkop@ac.me

Summary. For $1 , the Privalov class <math>N^p$ consists of all holomorphic functions f on the open unit disk \mathbb{D} of the complex plane \mathbb{C} such that

$$\sup_{0 \le r < 1} \int_{0}^{2\pi} (\log^{+} |f(re^{i\theta})|)^{p} \frac{d\theta}{2\pi} < +\infty.$$

M. Stoll [32] showed that the space N^p with the topology given by the metric d_p defined as

$$d_p(f,g) = \left(\int_{0}^{2\pi} \left(\log(1+|f^*(e^{i\theta}) - g^*(e^{i\theta})|\right)\right)^p \frac{d\theta}{2\pi}\right)^{1/p}, \quad f,g \in N^p,$$

becomes an F-algebra.

In this overview paper we give a survey of some known results related to the ideal structure of Privalov classes N^p ($1). In Section 2 we point out that every space <math>N^p$ ($1) is a ring of Nevanlinna–Smirnov type in the sense of Mortini [27]. Consequently, in the next section we establish the facts that <math>N^p$ is a coherent ring and that N^p has the Corona Property. In Section 4 we present a result of N. Mochizuki [26] which gives a complete characterization of the closed ideals in N^p . Consequently, if \mathcal{M} is a closed ideal in N^p which is not identically 0, then there is a unique modulo constants

Keywords and Phrases: Privalov class (space), inner function, ideal, ring of Nevanlinna–Smirnov type, finitely generated ideal, coherent ring, Corona Property, invariant subspace, Beurling's theorem.

²⁰¹⁰ Mathematics Subject Classification: 46E10, 46J15, 46J20, 30H50, 30H15.

inner function φ such that $\mathcal{M} = \varphi N^p$. Using this result, it can be proved that a closed subspace E of N^p is invariant if and only if it has the form φN^p for some inner function φ . This result is in fact the N^p -analogue of the famous Beurling's theorem for the Hardy spaces H^q $(0 < q < \infty)$.

1 INTRODUCTION

Let \mathbb{D} denote the open unit disk in the complex plane and let \mathbb{T} denote the boundary of \mathbb{D} . Let $L^q(\mathbb{T})$ $(0 < q \leq \infty)$ be the familiar Lebesgue spaces on \mathbb{T} . The Nevanlinna class N is the set of all functions f holomorphic on \mathbb{D} such that

$$\sup_{0 \le r < 1} \int_{0}^{2\pi} \log^{+} \left| f\left(re^{i\theta}\right) \right| \frac{d\theta}{2\pi} < \infty,$$

where $\log^+|x| = \max(\log|x|, 0)$ for $x \neq 0$ and $\log^+ 0 = 0$.

It is well known that for each $f \in N$, the radial limit (the boundary value) of f defined as

$$f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$$

exists for almost every $e^{i\theta} \in \mathbb{T}$ (e.g., see [7, p. 97]).

The Smirnov class N^+ consists of those functions $f \in N$ for which

$$\lim_{r \to 1} \int_{0}^{2\pi} \log^{+} \left| f\left(re^{i\theta}\right) \right| \frac{d\theta}{2\pi} = \int_{0}^{2\pi} \log^{+} \left| f^{*}\left(e^{i\theta}\right) \right| \frac{d\theta}{2\pi} < \infty.$$

Recall that we denote by H^q $(0 < q \le \infty)$ the classical *Hardy space* on \mathbb{D} , defined as the set of all holomorphic functions f on \mathbb{D} for which

$$||f||_q^{\max\{1,q\}} := \sup_{0 \le r < 1} \int_0^{2\pi} |f(re^{i\theta})|^q \frac{d\theta}{2\pi} < +\infty.$$

Further, H^{∞} is the space of all bounded holomorphic functions on \mathbb{D} with the supremum norm $\|\cdot\|_{\infty}$ defined as

$$||f||_{\infty} = \sup_{z \in \mathbb{D}} |f(z)|, \quad f \in H^{\infty}.$$

We refer [4] for a good reference on the spaces H^q and N^+ .

For $(1 the Privalov class <math>N^p$ consists of all holomorphic functions f on $\mathbb D$ for which

$$\sup_{0 \le r < 1} \int_{0}^{2\pi} (\log^{+} |f(re^{i\theta})|)^{p} \frac{d\theta}{2\pi} < +\infty.$$

These classes were introduced in the first edition of Privalov's book [28, p. 93], where N^p is denoted as A_p . It is known [26] (also see [19, Section 3]) that

$$N^q \subset N^p \ (q > p), \quad \bigcup_{p>0} H^p \subset \bigcap_{p>1} N^p, \quad \text{and} \quad \bigcup_{p>1} N^p \subset N^+,$$

where the above containment relations are proper.

The study of the spaces N^p (1 < p < ∞) was continued in 1977 by M. Stoll [32] (with the notation $(\log^+ H)^\alpha$ in [32]). Further, the topological and functional properties of these spaces were studied by C.M. Eoff ([5] and [6]), N. Mochizuki [26], Y. Iida and N. Mochizuki [10], Y. Matsugu [12], J.S. Choa [2], J.S. Choa and H.O. Kim [3], A.K. Sharma and S.-I. Ueki [30] and in works [19]–[25] of authors of this paper; typically, the notation of these spaces varied. Linear topological structure of the spaces N^p and their Fréchet envelopes was investigated in [16], [17], [21] and [22]. In particular, it was proved in [16, Theorem] that the space N^p (1 < p < ∞) does not have the Hahn-Banach approximation property, and hence, it does not have the Hahn-Banach separation property. Furthermore, the spaces N^p are neither locally convex [16, Corollary] nor locally bounded [23, Theorem 1.1]. Furthermore, the ideal structure of the algebras N^p was investigated in [14], [18], [22] and [26].

We refer the recent monograph [8, Chapters 2, 3 and 9] by V.I. Gavrilov, A.V. Subbotin and D.A. Efimov for a good reference on the spaces N^p .

In 1977 Stoll [32] proved the following result.

Theorem A ([32, Theorem 4.2]). The Privalov space N^p ($1) (with the notation <math>(\log^+ H)^p$ in [32]) with the topology given by the metric ρ_p defined as

$$\rho_p(f,g) = \left(\int_0^{2\pi} \left(\log(1 + |f(e^{i\theta}) - g(e^{i\theta})|) \right)^p \frac{d\theta}{2\pi} \right)^{1/p}, \quad f, g \in \mathbb{N}^p,$$
 (1)

is an F-algebra, i.e., an F-space (a complete metrizable topological vector space with the invariant metric) in which multiplication is continuous.

Notice that (1) with p = 1 defines the metric d_1 on the Smirnov class N^+ . N. Yanagihara proved [33] that the metric d_1 induces the topology on N^+ under which N^+ is an F-algebra.

It is well known [4, p. 26, Theorem 2.10] that every non-zero function $f \in N^+$ admits a unique factorization of the form

$$f(z) = B(z)S_{\mu}(z)F(z), \quad z \in \mathbb{D}, \tag{2}$$

where B is the Blaschke product with respect to zeros $\{z_n\} \subset \mathbb{D}$ of f (the set $\{z_n\}$ may be finite), S_{μ} is a singular inner function, F is an outer function for N^+ , i.e.,

$$B(z) = z^m \prod_{n=1}^{\infty} \frac{|z_n|}{z_n} \cdot \frac{z_n - z}{1 - \bar{z}_n z},$$
 (3)

with $\sum_{n=1}^{\infty} (1-|z_n|) < \infty$, m a nonnegative integer,

$$S_{\mu}(z) = \exp\left(-\int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)\right) \tag{4}$$

with a positive singular measure $d\mu$, and

$$F(z) = \lambda \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log\left|f^*(e^{it})\right| dt\right),\tag{5}$$

where $|\lambda| = 1$ and

$$\log|f^*(e^{i\theta})| \in L^1(\mathbb{T}). \tag{6}$$

A function F with the factorization (5) and for which $\log |F^*(e^{i\theta})| \in L^1(\mathbb{T})$ is called an outer function. Furthermore, a function φ of the form

$$\varphi(z) = B(z)S_{\mu}(z), \quad z \in \mathbb{D}, \tag{7}$$

where the functions B and S_{μ} are given by (3) and (4), respectively, is called an *inner* function or the *inner factor* of a function f factorized by (2). Notice that the function φ defined by (7) is a bounded holomorphic function on \mathbb{D} such that $|\varphi^*(e^{i\theta})| = 1$ for almost every $e^{i\theta} \in \mathbb{T}$, and hence, $|f^*(e^{i\theta})| = |F^*(e^{i\theta})|$ for almost every $e^{i\theta} \in \mathbb{T}$.

The inner-outer factorization theorem for the classes N^p is given by Privalov [28] as follows.

Theorem B ([28, pp. 98-100]; also see [6]). A function $f \in N^+$ factorized by (2) with (3) - (6) belongs to the Privalov class N^p if and only if $\log^+ |F^*(e^{i\theta})| \in L^p(\mathbb{T})$.

Remark 1. If we exclude only the condition $(\log^+ |F^*|)^p \in L^1(T)$ from Theorem B, we obtain the well known canonical factorization theorem for the class N^+ (e.g., see [4, p. 26] or [28, p. 89]).

In this paper, we give a survey of known results related the ideal structure of the Privalov classes N^p (1 < $p < \infty$).

In Section 2 of [14], the ideal structure of subrings N^p of N with p > 1 is described as consequences of the results in [27, Sections 1 and 3] given for an arbitrary ring of Nevanlinna–Smirnov type in the sense of Mortini. In particular, N^p is a ring of Nevanlinna–Smirnov type (Theorem 1). We also give a necessary and sufficient condition for an ideal I in H^{∞} to be the trace of an ideal I in I in

In Section 3 we notice that N^p is a coherent ring for all p > 1, that is, the intersection of two finitely generated ideals in N^p is finitely generated (Theorem 5). Furthermore, the algebra N^p has the Corona Property (Theorem 6). We also give a sufficient condition for an ideal I of N^p , generated by a finite number of inner functions and which contains an interpolating Blaschke product B, to be equal to the whole space N^p (Theorem 7).

The basic result in Section 4 is a result of N. Mochizuki [26] which gives a complete characterization of the closed ideals of N^p (Theorem 8). A closed subspace E of N^p is invariant under multiplication by z if and only if it is an ideal (Theorem 9). Applying this result and a result of Mochizuki [26, Theorem 4], it can be proved that a closed subspace E of N^p is invariant if and only if it has the form φN^p for some inner function

 φ (Theorem 10). This result is in fact the N^p -analogue of the famous Beurling's theorem for the Hardy spaces H^q (0 < $q < \infty$).

2 THE IDEALS IN N^p AND H^{∞}

Following R. Mortini [27], we have the following definition.

Definition 1. A ring R satisfying $H^{\infty} \subset R \subset N$ is said to be of *Nevanlinna-Smirnov* type if every function $f \in R$ can be written in the form g/h, where g and h belong to the space H^{∞} and h is an invertible element in R.

In particular, the Nevanlinna class N and the Smirnov class N^+ are rings of Nevanlinna-Smirnov type; hence the name (see [4, Chapter 2]). Further, Mortini noticed that by a result of M. Stoll [31], the ring $F^+ \cap N$ is of Nevanlinna-Smirnov type, where the space F^+ is the containing Fréchet envelope for N^+ , consisting of those functions f holomorphic in $\mathbb D$ satisfying

$$\lim\sup_{r\to 1} (1-r)\log M(r,f) = 0$$

with $M(r, f) = \max_{|z|=r} |f(z)|$ (see [34]).

By Theorem A, it is easy to show the following result (see [6], where N^p is denoted as N^+_{α}).

Theorem C ([6]). A function $f \in N$ belongs to the Privalov class N^p if and only if it can be expressed as the ratio g/h, where g and h are in H^{∞} , and h is an outer function such that $\log |h^*| \in L^p(T)$.

Clearly, by Theorem B, every function h described in Theorem C is an invertible element of N^p . Therefore, we have the following result.

Theorem 1 ([14, Theorem B]). N^p (1 < p < ∞) is a ring of Nevanlinna–Smirnov type.

As an application of Theorems A and B and the results of Mortini in [27], in Section 2 of [14] were obtained some facts about the ideal structure of the algebra N^p .

Definition 2. We say that an ideal I in H^{∞} is the *trace* of an ideal J in N^p if $I = J \cap H^{\infty}$.

The following result is an immediate consequence of Theorems A, B and [27, Satz 1, Satz 2].

Theorem 2 ([14, Theorem 1]). An ideal I in H^{∞} is the trace of an ideal J in N^p if and only if the following condition is satisfied: If $f \in I$, F is an outer function with $\log |F^*| \in L^p(T)$, and if $fF \in H^{\infty}$, then $fF \in I$. In this case, J is a unique ideal in N^p with $I = J \cap H^{\infty}$, and there holds $J = IN^p$.

Further, the above theorem immediately yields the following result.

Theorem 3 ([14, Theorem 2]). Suppose that I is an ideal in H^{∞} such that $f \in I$ implies that the inner factor of f also belongs to I. Then I is the trace of an ideal J in N^p , and there holds $J = IN^p$.

Remark 2. As noticed in [14, p. 130, Remark], it remains an open question is it true the converse of Theorem 3. While this is true for the Nevanlinna class and the Smirnov class [27, Korrolar 1 and Korrolar 2, resp.], the corresponding problem is here complicated by the fact that there exist outer functions which are not invertible in N^p .

Definition 3. An ideal P in a ring R is *prime* if whenever $fg \in P$, $f, g \in R$, then either f or g is in P.

A characterization of the invertible elements in N^p and a result in [27, Satz 3] yield the following result established in [14].

Theorem 4 ([14, Theorem 3]). A prime ideal P in H^{∞} is the trace of some prime ideal Q in N^p if and only if P contains no outer functions F for which $\log |F^*| \in L^p(T)$. When this is the case, Q is a unique prime ideal in N^p with this property, and there holds $Q = PN^p$.

Remark 3. By a result of Mochizuki [26, Theorem 3] (see [14, p. 131, Remark]), every prime ideal of N^p which is not dense in N^p is equal to the set of functions in N^p vanishing at a specific point of \mathbb{D} . The analogous result for the class N^+ was proved in [29, Theorem 1].

3 FINITELY GENERATED IDEALS IN N^p

Definition 4. An ideal J in the ring R such that $H^{\infty} \subset R \subset N$, is called *finitely generated* if there exist elements $f_1, \ldots, f_n \in R$ such that

$$J = (f_1, \dots, f_n) = \left\{ \sum_{i=1}^n g_i f_i : g_i \in R \right\}.$$

If n can be chosen to be one, then J is a *principal ideal*. A ring R is said to be *coherent* if the intersection of two finitely generated ideals in R is finitely generated.

Using the result in [13] that H^{∞} is a coherent ring, it was shown in [27, Satz 7] that this is true for all rings of Nevanlinna–Smirnov type. In particular, by Theorem 1, we have the following result.

Theorem 5 ([14, Theorem 4]). N^p is a coherent ring for all p > 1.

Definition 5. We say that a commutative ring R with unit of holomorphic functions on the disk \mathbb{D} has the *Corona Property* if the ideal generated by $f_1, \ldots, f_n \in R$ is equal to R if and only if there is an invertible element f of R such that

$$|f(z)| \leq \sum_{i=1}^{n} |f_i(z)|$$
 for all $z \in \mathbb{D}$.

Definition 5 is motivated by the famous Corona Theorem of Carleson (for example, see [7, p. 324] or [4, p. 202]), which states that the algebra H^{∞} of all bounded holomorphic functions on \mathbb{D} has the Corona Property. Mortini noticed [27, Satz 4] that by a result of

Wolff [7, p. 329], it is easy to show that every ring of Nevanlinna–Smirnov type has the Corona Property. In particular, by Theorem 1 we have the following result.

Theorem 6 ([14, Theorem 5]). The algebra N^p has the Corona Property for all p > 1.

Remark 4. It was proved in [11, Theorem 7] that there exists a subalgebra of the Nevanlinna class N containing the Smirnov class N^+ without the Corona Property.

Definition 6. A sequence $\{z_k\}_{k=1}^{\infty} \subset \mathbb{D}$ is called an *interpolating sequence* (for H^{∞}) if for every bounded sequence $\{\omega_k\}_{k=1}^{\infty}$ of complex numbers there exists a function f in H^{∞} such that $f(z_k) = \omega_k$ for every $k = 1, 2, \ldots$ An *interpolating Blaschke product* is a Blaschke product given by (3) whose (simple) zeros form an interpolating sequence.

The following theorem given in [14] generalizes Theorem 6 in [27].

Theorem 7 ([14, Theorem 7]). Assume that I is an ideal in N^p generated by inner functions $\varphi_1, \ldots, \varphi_n$, and suppose that I contains an interpolating Blaschke product B with zeros $\{z_k\}_{k=1}^{\infty}$ such that

$$\sum_{k=1}^{\infty} \left(1 - |z_k|^2\right) \left|\log\left(|\varphi_1(z_k)| + \dots + |\varphi_n(z_k)|\right)\right|^p < \infty.$$

Then $I = N^p$.

4 IDEALS IN THE SPACES N^p GENERATED BY INNER FUNCTIONS

Let U denote the operator of "multiplication by z" on the space N^p , that is,

$$(Uf)(z) = zf(z) \quad (f \in N^p, z \in \mathbb{D}).$$

U is called the *right shift* or *unilateral shift* because the Taylor coefficients of f one unit to the right.

Definition 7. An invariant subspace of the space N^p is defined as a closed subspace E of N^p such that $(Uf)(z) \in E$ whenever $f \in E$.

A characterization of the closed ideals of N^p is completely given by N. Mochizuki [26] as follows.

Theorem 8 ([26, Theorem 4]; cf. also see [22, Theorem 2.1]). Let \mathcal{M} be a closed ideal in N^p which is not identically 0. Then there is a unique modulo constants inner function φ defined by (7) such that $\mathcal{M} = \varphi N^p$, where

$$\varphi N^p = \{ \varphi f : f \in N^p \}.$$

The following result was attributed in [22].

Theorem 9 ([22, Lemma 2.2]). A closed subspace E of N^p is invariant if and only if it is an ideal.

As an immediate consequence of Theorems 8 and 9, it is obtained in [22] the following N^p -analogue of the famous Beurling's theorem for the Hardy spaces H^q ([1]; also see [9, Ch. 7, p. 99]).

Theorem 10 ([22, Theorem 2.3]; cf. also [20, the assertion 2.3 on p. 99]). A closed subspace E of N^p is invariant if and only if it has the form φN^p for some inner function φ .

Remark 5. Theorem 10 shows that there is a one-to-one correspondence between inner functions and invariant subspaces of N^p ; so each invariant subspace of N^p being of the form of an ideal φN^p , where φ is an inner function.

Remark 6. By [29, Theorem 2], it follows that Theorem 8 is also true for the Smirnov class N^+ .

REFERENCES

- [1] A. Beurling, On two problems concerning linear transformations in Hilbert space, *Acta Math.* 81, 239–255 (1949).
- [2] J.S. Choa, Composition operators between Nevanlinna-type spaces, J. Math. Anal. Appl. 257, 378–402 (2001).
- [3] J.S. Choa and H.O. Kim, Composition operators on some F-algebras of holomorphic functions, Nihonkai Math. J. 7, 29–39 (1996).
- [4] P.L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- [5] C.M. Eoff, Fréchet envelopes of certain algebras of analytic functions, Michigan Math. J. 35, 413–426 (1988).
- [6] C.M. Eoff, A representation of N_{α}^{+} as a union of weighted Hardy spaces, Complex Var. Theory Appl. 23, 189–199 (1993).
- [7] J.B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- [8] V.I. Gavrilov, A.V. Subbotin and D.A. Efimov, Boundary properties of analytic functions (further contributions), Izdat. Moskov. Univ., Moscow, 2013, 262 pages (in Russian).
- [9] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Enlewood Dliffs, N.J., 1962.
- [10] Y. Iida and N. Mochizuki, Isometries of some F-algebras of holomorphic functions, Arch. Math. (Basel) 71, 297–300 (1998).
- [11] R. Martin, On the ideal structure of the Nevanlinna class, *Proc. Amer. Math. Soc.* **114**, 135–143 (1992).
- [12] Y. Matsugu, Invariant subspaces of the Privalov spaces, Far East J. Math. Sci. 2, 633-643 (2000).
- [13] W.S. McVoy and L.A. Rubel, Coherence of some rings of functions, J. Funct. Anal. 21, 76–87 (1976).
- [14] R. Meštrović, Ideals in some rings of Nevanlinna-Smirnov type, Math. Montisnigri 8, 127–135 (1997).
- [15] R. Meštrović, Topological and F-algebras of holomorphic functions, Ph.D. Thesis, University of Montenegro, Podgorica, 1999.
- [16] R. Meštrović, The failure of the Hahn Banach properties in Privalov spaces of holomorphic functions, *Math. Montisnigri* **17**, 27–36 (2004).
- [17] R. Meštrović, F-algebras M^p (1 < p < ∞) of holomorphic functions, The Scientific World Journal (subject area: Mathematical Analysis) Vol. **2014**, 10 pages (2014), Article ID 901726,
- [18] R. Meštrović, Maximal ideals in some F-algebras of holomorphic functions, accepted for publication in Filomat.
- [19] R. Meštrović and Ž. Pavićević, Remarks on some classes of holomorphic functions, *Math. Montisnigri* 6, 27–37 (1996).
- [20] R. Meštrović and Ž. Pavićević, The logarithmic analogue of Szegö's theorem, *Acta Sci. Math.* (*Szeged*) **64**, 97–102 (1998),

- [21] R. Meštrović and Ż. Pavićević, Topologies on some subclasses of the Smirnov class, *Acta Sci. Math.* (Szeged) **69**, 99–108 (2003).
- [22] R. Meštrović and Ž. Pavićević, Weakly dense ideals in Privalov spaces of holomorphic functions, J. Korean Math. Soc. 48, 397–420 (2011).
- [23] R. Meštrović and Ž. Pavićević, A topological property of Privalov spaces on the unit disk, *Math. Montisnigri* **31**, 1–11 (2014).
- [24] R. Meštrović and A.V. Subbotin, Multipliers and linear functionals in Privalov's spaces of holomorphic functions on the disk, *Dokl. Akad. Nauk* **365**, no. 4, 452–454 (1999) (in Russian).
- [25] R. Meštrović and J. Šušić, Interpolation in the spaces N^p (1 < p < ∞), Filomat 27, 293–301 (2013).
- [26] N. Mochizuki, Algebras of holomorphic functions between H^p and N_* , Proc. Amer. Math. Soc. 105, 898–902 (1989).
- [27] R. Mortini, Zur Idealstruktur von Unterringen der Nevanlinna-klasse N, $S\acute{e}m$. Math. Luxembourg 1, 81–91 (1989).
- [28] I.I. Privalov, Boundary properties of singled-valued analytic functions, Izdat. Moskov. Univ., Moscow, 1941 (in Russian).
- [29] J.W. Roberts and M. Stoll, *Prime and principal ideals in the algebra* N⁺, Arch. Math. (Basel) **27**, 387–393 (1976); Correction, ibid. **30**, p. 672 (1978).
- [30] A.K. Sharma and S.-I. Ueki, Composition operators from Nevanlinna type spaces to Bloch type spaces, *Banach J. Math. Anal.* **6**, 112–123 (2012).
- [31] M. Stoll, A characterization of $F^+ \cap N$, Proc. Amer. Math. Soc. 57, 97–98 (1976).
- [32] M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, *Ann. Polon. Math.* **35**, 139–158 (1977).
- [33] N. Yanagihara, Multipliers and linear functionals for the class N^+ , Trans. Amer. Math. Soc. 180, 449–461 (1973).
- [34] N. Yanagihara, The containing Fréchet space for the class N⁺, Duke Math. J. 40, 93–103 (1973).

Received July 10, 2014