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Summary. The article describes the solution for the Click-Through Rate Prediction 
competition organized by Avazu on the Kaggle data mining platform. Two novel ideas are 
introduced: the algorithm for likelihood features engineering and FTRL-Proximal Batch 
algorithm – the modification of the famous Google’s online algorithm. The solution placed 5 
out of 1604 teams on the final leaderboard.

1 INTRODUCTION 

Ad click-through rates (CTR) plays an important role in online advertising industry. The ad 
clicks with big history can be easily predicted using machine learning methods. In case of 
small number of clicks, it is difficult to get a reliable prediction. During the past several years 
the data science researchers have made a lot of efforts to solve this problem. Recent success is 
obtained by using online algorithms3 and algorithms based on the low rank approximation, 
particularly Factorization Machines2,8.  

The paper makes three major contributions. First, it describes the robust algorithm for 
likelihood feature engineering. Second, it describes the FTRL-Proximal Batch algorithm - the 
modification of the Google’s FTRL-Proximal online algorithm that can essentially improve 
the prediction accuracy. Third, it gives the solid approach to solve CTR prediction problem 
with high accuracy. We applied our ideas in the competition organized by Avazu on the 
Kaggle platform in January, 2015 and obtained the 5th result on the final leaderboard (out of 
1604 participants). 

The paper is structured as follows: In section 2 we describe the provided data and 
introduce the convenient notations. In section 3 we describe our main algorithm for feature 
engineering and introduce the algorithm for likelihood feature engineering. In section 4 we 
describe the FTRL-Proximal online algorithm and its modification. In section 5 we describe 
the Factorization Machine model constructed on the provided dataset with categorical 
features. Before we conclude in section 6, we describe the final ensembling for the generated 
model. 

2 PROVIDED DATA, EVALUATION AND NOTATIONS 

Let X be the m×n design matrix, where m is a number of instances in the training set, and n 
is a number of features. The organizers provided the dataset with n = 23 basic features, mtrain
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= 40 428 967 samples for the training set and mtest = 4 577 464 samples for the test set. The 
list of provided features is summarized in the Figure 1. 

 

 
Fig. 1: Basic features 

We introduce the notations: 
 y : the binary target vector of size m; 
 xj : the column j of matrix X; 
 xi : the row i of matrix X; 
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1)(  : sigmoid function. 

One sample represents the event of ad impression on the site or in the application. The 
target variable y takes the value 1 if the user clicks on the ad, 0 – otherwise. The summary for 
the basic features is compiled in the Appendix A. 

The performance of the algorithm is evaluated using the logarithmic loss 
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where iŷ  is a prediction for the instance i. 
Sometimes it is convenient to work with labels }1,1{iy , then the logarithmic loss 

function can be calculated as 
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where ip is a raw score from the model such that the prediction is defined as )(ˆ
ii py   for 

all },,1{ mi  . 
 

3 PREPROCESSING AND FEATURE ENGINEERING 

The feature engineering is a keystone in data mining process. In many cases, problems can 
be solved with the simplest approach if the engineered features reflect the nature of data.  

The provided dataset contains 23 categorical features and additional 43 categorical features 
have been produced. The complete list of engineered features can be found in the Appendix 
B. During the feature engineering process quantitative features have been transformed to 
categorical by either rounding or discretization. The levels of categorical features with low 
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frequencies (appeared less than 3 times in the dataset for the FTRL-Proximal algorithm and 
less than 100 times for the Factorization Machine) have been replaced by special level -2. 

3.1 Discretization 

The equal frequencies discretization procedure5,9 has been applied to the quantitative 
features. The range [a, b] of each quantitative feature has been divided into t subsequent 
intervals containing equal number of samples. The number of each interval has been assigned 
to the samples from the interval. 

3.2 Feature engineering: algorithm 1 

The produced feature can be divided in five groups: 
 Blocks: combination of two or more features; 
 Counts: number of samples for different feature values; 
 Counts unique: number of different values of one feature for fixed value of another 

feature; 
 Likelihoods: minimize the loss function given that for each level of categorical feature 

the probability of outcome for the samples with this level is constant: 
L

t
min , where )|( txyP ijit  ; 

 Others. 

 
In machine learning literature the likelihood function is defined as a probability density 

function )|( dataP , where θ is a vector of model parameters. In this paper we use the term 
likelihood in a different meaning. 

The Algorithm 1 describes the general way to produce features based on the chosen set J of 
categorical features.  
 
Algorithm 1 Feature engineering 
function SPLITMATRIXBYROWS(M) 

split the matrix M into )(MT  non-overlapping submatrices )}(,...,1{},{ MTtM t   by rows 
such that each tM  has identical rows, )(MT  is a number of unique rows in the matrix M 

return list of index sets },...,{ )(1 MTII , where tI contains row indices of the matrix M   

corresponding to the matrix tM  
require J = {j1, …, js}   {1, …, n}, K = {k1, …, kq}   {1, …, n} \ J 
Z ← (xij)   X, where i {1, 2, …, m}, j   J 
bi ← 0 (block), ci ← 0 (count), ui ← 0 (count unique), pi ← 0 (likelihood), for all i {1, …, m} 
for I = {i1, …, ir}   SPLITMATRIXBYROWS(Z) do 
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At = (xik)   X, where i   I, k   K 
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rii uu ...

1
 length(SPLITMATRIXBYROWS(At) 

 
The diagram in the Figure 2 shows the main steps of the Algorithm 1.  
 

 
Fig. 2: Feature engineering (algorithm 1) 

In fact, the proposed way to generate likelihood features p is very ineffective and leads to 
overfitting for matrices Zt with small number of rows. To avoid overfitting and generate 
robust likelihood features several modification to the Algorithm 1 have been applied. 

 Likelihood (Type 1). Calculated based on all days except one, likelihood is assigned 
to the samples for the removed day only. 

 Likelihood (Type 2). Calculated based on the previous day only, likelihood is 
assigned to the samples from the next day only. 

The column Likelihood Type 1 loss in the Appendix A shows the loss when the likelihood 
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features of type 1 are interpreted as predicted probabilities. 

3.3 Likelihood feature engineering: algorithm 2 

The likelihoods of types 1 and 2 do not take into consideration the frequencies of 
categorical features levels. We have developed a robust algorithm that calculates likelihood 
features using frequencies of different levels (Likelihood Type 3).  

 
Algorithm 2 Likelihood Type 3 feature engineering 
function SPLITMATRIXBYROWS(M) 

split the matrix M into )(MT  non-overlapping submatrices )}(,...,1{},{ MTtM t   by rows 
such that each tM  has identical rows, )(MT  is a number of unique rows in the matrix M 

return list of index sets },...,{ )(1 MTII , where tI contains row indices of the matrix M   

corresponding to the matrix tM  
require: 

parameter α > 0 
J = (j1, …, js)   {1, …, n} 

increasing sequence of jumps V = (v1, …, vl)   {1, …, s}, where v1 < s 
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for Vv  do 
Jv = {j1, …, jv} 
Z = (xij)   X, where i   {1, 2, … m}, jJv 

pi = 0, ci = 0,  i   {1, …, m} 

for I = {i1, …, ir}   SPLITMATRIXBYROWS(Z) do 
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)(   cw  - weight vector 
},...,1{,)1( mipwfwf iiiii  - update the likelihood feature vector 

 
We have implemented the algorithm 2 with the initial sequence of features J = (place 

category, place domain, place id, banner position, C16, connection type, discrete1, discrete3, 
discrete2, discrete4, device model) and sequence of jumps V = (1, 2, 3, 5, 6, 8, 10, 11). The 
leaderboard scores for different likelihoods are combined in the table. 

 
Likelihood feature Type Leaderboard score 

likeli1 device 1 0.4397212 
likeli1 device ad 1 0.4331226 

likeli21 2 0.6002409 
likeli22 2 0.5910416 
likeli23 2 0.5929031 
likeli3 3 0.3940163 

Table 1 : Likelihood features performance 
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4 FTRL-PROXIMAL MODEL 

We transformed the design matrix X to the sparse binary design matrix such that one 
column corresponds to one level of categorical feature (due to the huge number of levels we 
have applied the hashing trick6 to transform values of categorical features to indices). 

Follow The (Proximally) Regularized Leader (FTRL-Proximal) is the online algorithm 
presented in 3,4. The prediction for sample i is constructed as )(ˆ

iii xwy   , where wi is a 
weight vector of size n on i-th iteration. 

The algorithm updates the weights of the sample i+1 based on the previous samples 
{1,…,i} by finding 
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where λ1, λ2 are regularization parameters, α, β are parameters of the learning rate schedule, τr 

= (τr1, … , τrN) is a vector of learning rates for the step r, 
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vector of logarithmic loss L in the form (1) for the step r. 
 
Algorithm 3 FTRL-Proximal algorithm 
require parameters α, β, λ1, λ2 
zj = 0 and nj =0, },...,1{ Nj  
for i = 1 to m do 

receive sample vector xi and let J = {j | xij ≠ 0} 
prediction step: 

for j   J do 
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predict )(ˆ wxy ii    using the wj computed above 
update step: 

observe label yi   {0, 1} 
for j   J do 

iij yyg  ˆ  - gradient direction of loss w.r.t. wj 

 jjjj ngn  21
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Data batching is an effective technique that frequently increases the prediction accuracy. 

The big diversity of mobile applications and internet web-pages inspired us to transform the 
FTRL-Proximal algorithm to its batching version. The natural way to create batches from the 
provided dataset is to separate it by sites and applications. Unfortunately, there are a lot of 
sources with small number of clicks and sources appeared in the test dataset only. We suggest 
to train a model for each small batch starting from the previous batch weights.  

From the first point of view it seems that we need to perform a lot of computational work, 
but the implementation of this idea is very simple. We concatenated the training and test 
datasets and sorted them by the set of features. The FTRL-Proximal algorithm has been 
applied to the resulting dataset. In case we receive the sample from the testing set we skip the 
update step of the Algorithm 3.  
 
Algorithm 4 FTRL-Proximal Batch algorithm 
require parameters α, β, λ1, λ2 
zj = 0 and nj =0, },...,1{ Nj  
for i = 1 to m do 

receive sample vector xi and let J = {j | xij ≠ 0} 
prediction step: 

for j   J do 
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predict )(ˆ wxy ii    using the wj computed above 
observe label yi 

if yi   {0, 1} then 

update step: 

for j   J do 
iij yyg  ˆ  - gradient direction of loss w.r.t. wj 

 jjjj ngn  21
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The Algorithm 4 can be essentially improved by sorting with respect to different sets of 

features. The following table summarizes the leaderboard scores for different types of sorting 
in the Algorithm 4. 
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Description Leaderboard score 

dataset is sorted by app id, site id, banner pos, 

count1, day, hour 
0.3844277 

dataset is sorted by app domain, site domain, 

count1, day, hour 
0.3835289 

dataset is sorted by person, day, hour 0.3844345 
dataset is sorted by day, hour with 1 iteration 0.3871982 
dataset is sorted by day, hour with 2 iterations 0.3880423 

Table 2 : FTRL-Proximal Batch models performance 
 

The last two rows corresponds to the FTRL-Proximal algorithm without batches (the 
Algorithm 3) with one and two training iterations. 

5 FACTORIZATION MACHINE MODEL 

The polynomial regression is one of the most popular approaches in machine learning. For 
example, the second order polynomial regression includes all pairwise interactions between 
features:  














  



 

1

1 11
0ˆ

n

j

n

jk

kj

jk

n

j

j

j xxwxwwy  . 

The number of weights in this model is 0.5n(n-1) + n + 1. To adapt the polynomial 
regression model for the dataset with categorical features we need to transform each 
categorical feature to the set of binary features such that one binary feature corresponds to one 
level of categorical features. But such adaptation increases the number of weight to 0.5N(N-1) 

+ N + 1, where N is a number of levels for all categorical features. In the provided dataset N 

= 256 971, so the number of weights for the 2nd order polynomial regression is 
33 023 343 511. 

The Factorization Machine algorithm7 is a very successful attempt to reduce number of 
weights and it is based on the idea that matrix of weights has small rank, so we can apply low 
rank approximation procedure to this matrix. We assume that each feature is described by H 
latent factors and prediction is obtained by 
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where (vj1,…,vjH) is a vector of latent factors corresponding to the feature j and ∙ denotes the 
dot product of two vectors. Then number of weights for the model with binary features is 
reduced to NH + N + 1. 

In case if all features in the dataset are categorical Jahrer et al.2 proposed the different idea 
to generate predictions: 
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The number of weights is N × n × H. The bias and linear terms have been excluded from 
the model. For the provided dataset n = 66, N = 256 971 and the number of latent factors we 
used H = 20, then the number of weights is 339 201 720. 

It is convenient to use the logarithmic loss L in the form (2) for this model (see sect.2). The 
regularization term has been added to the loss function L to avoid huge weights 
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and the learning rate schedule described in 1 
 2khxkhxkhx ijijij
g  

are utilized for the weight update 

khxkhxkhxkhx ijijijij
gww    

(the values for model parameters: regularization parameter λ = 0.00002, learning rate α = 

0.02, number of latent factors H = 20, number of iterations T = 20). 
We have implemented the preprocessing procedure to recode the levels of categorical 

features to numerical values. To explain the basic idea of the algorithm we consider a simple 
example for two latent factors H = 2 and design matrix 
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X

271.0
232.0
231.0

. 

After the preprocessing step the design matrix is transformed to 
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632
531

X . 

The Factorization Machine algorithm builds the prediction for three samples in the 
following forms: 

 ),(),(),(),(),(),(
3
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5225213323315125111321313123111221211 wwwwwwwwwwwwp  , 
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6226213323316126112322313123112222212 wwwwwwwwwwwwp  , 

 ),(),(),(),(),(),(
3
2

7227214324317127111321314124111221213 wwwwwwwwwwwwp  . 

The pseudocode for the preprocessing procedure and Factorization Machine model is listed 
in the Algorithm 5. The leaderboard score obtained by this algorithm is 0.3818004. 
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Algorithm 5 Factorization Machine 
preprocessing step: 

N = 0 

for j=1 to n do 
receive column xj 
u = (u1,…,us) is a vector of different values of column xj 
bj = 0  j {1,…,m} 

for i=1 to s do 
bk = i+N,  k   {k: xk = ui} 

N = N + s 

replace the column j of matrix X by bj 
require:  
λ, α, H, T - parameters 
w ← (N × n × H) - uniform random matrix of weights 
g ← (N × n × H) - unit matrix of gradients 
τ ← (N × n × H) - zero matrix of learning rate schedule 
for t=1 to T do 

for i=1 to m do 
receive sample xi 
prediction step: 

pi = 0 

for j = 1 to n-1 do 
for k = j+1 to n do 

for h = 1 to H do 
jhxkhxii ikij

wwpp   
update step: 

for j=1 to n-1 do 
for k=j+1 to n do 

for h=1 to H do 
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},...,1{),(ˆ mipy ii  - prediction 

6 CROSS-VALIDATION AND ENSEMBLING 

All algorithms have been validated by cross-validation procedure: we train the models for 
the first 9 days (from 21 to 29) and check predicted values for the 10th day (day 30). All 
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models and likelihood features showed high correlation between the cross-validation score 
and the leaderboard score.  

The final model was the geometric average of 4 models: 1 Factorization Machine and 3 
FTRL-Proximal Batch models. All leaderboard scores obtained from individual models and 
ensembling are summarized in the Appendix C. 

7 RESULTS AND FUTURE WORK 

The TOP-7 results in the Click-Through Rate Prediction challenge are deduced in the 
table: 
 

Place Team Leaderboard score Difference between 

the 1st place score 

1 4 Idiots 0.3791384 --- 
2 Owen 0.3803652 0.32% 
3 Random Walker 0.3806351 0.40% 
4 Julian de Wit 0.3810307 0.50% 
5 Dmitry Efimov 0.3810447 0.50% 

6 Marios and Abhishek 0.3828641 0.98% 
7 Jose A. Guerrero 0.3829448 1.00% 

Table 3 : Final results 
 

There are several directions can be chosen for the future work: 
 apply batching idea to the Factorization Machine algorithm; 
 find better sorting for the FTRL-Proximal Batch algorithm; 
 find an algorithm that can find better sorting without cross-validation procedure. 

APPENDIX A 

Global average loss: 0.4405303 
 

Layer Feature Number of 

possible values 

Likelihood Type 1 

loss 

% of improvement 

from global average 

Site id 4 737 0.4181859 5.07% 
Site domain 7 745 0.4228221 4.02% 
Site category 26 0.4360144 1.03% 

Application id 8 552 0.4237463 3.81% 
Application domain 559 0.4344352 1.38% 
Application category 36 0.4332868 1.64% 

Device id 2 686 408 0.4398604 0.15% 
Device model 8 251 0.4334043 1.62% 
Device type 5 0.4404688 0.01% 

Connection ip 6 729 486 0.4352860 1.19% 
Connection type 4 0.4372744 0.74% 

Banner position 5 0.4393470 0.27% 
Banner C1 7 0.4402977 0.05% 
Banner C14 2 626 0.4254656 3.42% 
Banner C15 8 0.4363940 0.94% 
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Banner C16 9 0.4350504 1.24% 
Banner C17 435 0.4260337 3.29% 
Banner C18 4 0.4263280 3.22% 
Banner C19 68 0.4341547 1.45% 
Banner C20 172 0.4335514 1.58% 
Banner C21 60 0.4280274 2.84% 
Time day 11   
Time hour 24   

Table 4 : Basic features description 

APPENDIX B 

 
Name Comments Type 

place id site id, app id Other 
place domain site domain, app domain Other 
place category site category, app category Other 

ad position 





appin  ad  ,0
siteon  ad  ,1

 
Other 

person device id, device ip, device type, 
device model 

Block 

ad C14, C15, C16, C17, C18,  
C19, C20, C21 

Block 

count1 device id Count 
count2 device ip Count 
count3 person Count 
count4 person, site id Count 
unique1 device id; site id Count unique 
unique2 device ip; site id Count unique 
unique3 place id; ad Count unique 
unique4 person; ad Count unique 
unique5 device id; device ip Count unique 
unique6 person; day Count unique 
unique7 person, hour; site id Count unique 
unique8 person, hour; app id Count unique 
discrete1 count1 Discretized 
discrete2 count2 Discretized 
discrete3 unique1 Discretized 
discrete4 unique2 Discretized 
discrete5 count3 Discretized 
block1 device id, site id Block 
block2 device id, place id Block 
block3 device model, C16 Block 
block4 banner position, connection type Block 
block5 place id, banner position Block 
block6 place id, banner position, connection 

type, device model 
Block 

block7 discrete1, discrete2,discrete3, discrete4 Block 
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block9 place category, place domain, place id, 
banner position, C16, connection type, 

discrete1, discrete3, discrete2, 
discrete4, device model 

Block 

block11 person, site id Block 
block12 site domain, site id Block 
block13 C14, C15, C16, C17, C18, C19, C20, 

C21, device id, device ip, device type, 
device model 

Block 

likeli1 device device id, device type, device model Likelihood1 
likeli1 place place id Likelihood1 
likeli1 site site id Likelihood1 
likeli1 app app id Likelihood1 

likeli1 device id device id Likelihood1 
likeli1 device ad device id, device type, device model, 

banner pos, C15, C16 
Likelihood1 

likeli21 person, place id Likelihood2 
likeli22 person, place category Likelihood2 
likeli23 person, place domain Likelihood2 
likeli3 see the Algorithm 2 Likelihood3 

click age 



 

otherwise ,2
25day  ,1

 
Other 

place device click ratio 













otherwise                          ,0
device likeli1  place likeli1 ,1
device likeli1  place likeli1 ,1  

 

Other 

person hour site rate 
unique8unique7

unique7


 
Other 

person site rate percentage of visited sites with respect 
to all activities for each person 

Other 

Table 5 : Engineered features description 

APPENDIX C 

Model name Description Leaderboard score 

ftrlb1 Algorithm 4: dataset is sorted by app id,  
site id, banner pos, count1, day, hour 

0.3844277 

ftrlb2 Algorithm 4: dataset is sorted by app domain,  
site domain, count1, day, hour 

0.3835289 

ftrlb3 Algorithm 4: dataset is sorted by person,  
day, hour 

0.3844345 

fm Algorithm 5 0.3818004 
ens fm0.6 ∙ ftrlb10.1 ∙ ftrlb20.2 ∙ ftrlb30.1 0.3810447 

Table 6 : Individual models and ensembling performance 
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