
MATHEMATICA MONTISNIGRI
Vol XXXII (2015)

2010 Mathematics Subject Classification: 68T20, 68W27, 68T10.
Key words and Phrases: Online algorithm, Feature engineering, Categorical feature, Factorization machine.

CLICK-THROUGH RATE PREDICTION – TOP-5 SOLUTION FOR

THE AVAZU CONTEST

DMITRY EFIMOV
 *

* American University of Sharjah
Sharjah, UAE

e-mail: defimov@aus.edu

Keywords: online algorithm, feature engineering, categorical feature, factorization machine

Summary. The article describes the solution for the Click-Through Rate Prediction
competition organized by Avazu on the Kaggle data mining platform. Two novel ideas are
introduced: the algorithm for likelihood features engineering and FTRL-Proximal Batch
algorithm – the modification of the famous Google’s online algorithm. The solution placed 5
out of 1604 teams on the final leaderboard.

1 INTRODUCTION

Ad click-through rates (CTR) plays an important role in online advertising industry. The ad
clicks with big history can be easily predicted using machine learning methods. In case of
small number of clicks, it is difficult to get a reliable prediction. During the past several years
the data science researchers have made a lot of efforts to solve this problem. Recent success is
obtained by using online algorithms3 and algorithms based on the low rank approximation,
particularly Factorization Machines2,8.

The paper makes three major contributions. First, it describes the robust algorithm for
likelihood feature engineering. Second, it describes the FTRL-Proximal Batch algorithm - the
modification of the Google’s FTRL-Proximal online algorithm that can essentially improve
the prediction accuracy. Third, it gives the solid approach to solve CTR prediction problem
with high accuracy. We applied our ideas in the competition organized by Avazu on the
Kaggle platform in January, 2015 and obtained the 5th result on the final leaderboard (out of
1604 participants).

The paper is structured as follows: In section 2 we describe the provided data and
introduce the convenient notations. In section 3 we describe our main algorithm for feature
engineering and introduce the algorithm for likelihood feature engineering. In section 4 we
describe the FTRL-Proximal online algorithm and its modification. In section 5 we describe
the Factorization Machine model constructed on the provided dataset with categorical
features. Before we conclude in section 6, we describe the final ensembling for the generated
model.

2 PROVIDED DATA, EVALUATION AND NOTATIONS

Let X be the m×n design matrix, where m is a number of instances in the training set, and n
is a number of features. The organizers provided the dataset with n = 23 basic features, mtrain

Dedicated to the 80th anniversary of professor V. I. Gavrilov

158

Olga
Text Box
158-171

Dmitry Efimov

= 40 428 967 samples for the training set and mtest = 4 577 464 samples for the test set. The
list of provided features is summarized in the Figure 1.

Fig. 1: Basic features

We introduce the notations:
 y : the binary target vector of size m;
 xj : the column j of matrix X;
 xi : the row i of matrix X;

ze

z

1

1)(: sigmoid function.

One sample represents the event of ad impression on the site or in the application. The
target variable y takes the value 1 if the user clicks on the ad, 0 – otherwise. The summary for
the basic features is compiled in the Appendix A.

The performance of the algorithm is evaluated using the logarithmic loss

m

i

iiii yyyy
m

L
1

))ˆ1log()1()ˆlog((1 , (1)

where iŷ is a prediction for the instance i.
Sometimes it is convenient to work with labels }1,1{iy , then the logarithmic loss

function can be calculated as

m

i

py iie
m

L
1

)1log(1 , (2)

where ip is a raw score from the model such that the prediction is defined as)(ˆ
ii py for

all },,1{ mi .

3 PREPROCESSING AND FEATURE ENGINEERING

The feature engineering is a keystone in data mining process. In many cases, problems can
be solved with the simplest approach if the engineered features reflect the nature of data.

The provided dataset contains 23 categorical features and additional 43 categorical features
have been produced. The complete list of engineered features can be found in the Appendix
B. During the feature engineering process quantitative features have been transformed to
categorical by either rounding or discretization. The levels of categorical features with low

159

Dmitry Efimov

frequencies (appeared less than 3 times in the dataset for the FTRL-Proximal algorithm and
less than 100 times for the Factorization Machine) have been replaced by special level -2.

3.1 Discretization

The equal frequencies discretization procedure5,9 has been applied to the quantitative
features. The range [a, b] of each quantitative feature has been divided into t subsequent
intervals containing equal number of samples. The number of each interval has been assigned
to the samples from the interval.

3.2 Feature engineering: algorithm 1

The produced feature can be divided in five groups:
 Blocks: combination of two or more features;
 Counts: number of samples for different feature values;
 Counts unique: number of different values of one feature for fixed value of another

feature;
 Likelihoods: minimize the loss function given that for each level of categorical feature

the probability of outcome for the samples with this level is constant:
L

t
min , where)|(txyP ijit ;

 Others.

In machine learning literature the likelihood function is defined as a probability density

function)|(dataP , where θ is a vector of model parameters. In this paper we use the term
likelihood in a different meaning.

The Algorithm 1 describes the general way to produce features based on the chosen set J of
categorical features.

Algorithm 1 Feature engineering
function SPLITMATRIXBYROWS(M)

split the matrix M into)(MT non-overlapping submatrices)}(,...,1{},{ MTtM t by rows
such that each tM has identical rows,)(MT is a number of unique rows in the matrix M

return list of index sets },...,{)(1 MTII , where tI contains row indices of the matrix M

corresponding to the matrix tM
require J = {j1, …, js} {1, …, n}, K = {k1, …, kq} {1, …, n} \ J
Z ← (xij) X, where i {1, 2, …, m}, j J
bi ← 0 (block), ci ← 0 (count), ui ← 0 (count unique), pi ← 0 (likelihood), for all i {1, …, m}
for I = {i1, …, ir} SPLITMATRIXBYROWS(Z) do

rcc
rii ...

1

r

yy
pp r

r

ii

ii

...
... 1

1

tbb
rii ...

1

At = (xik) X, where i I, k K

160

Dmitry Efimov

rii uu ...

1
 length(SPLITMATRIXBYROWS(At)

The diagram in the Figure 2 shows the main steps of the Algorithm 1.

Fig. 2: Feature engineering (algorithm 1)

In fact, the proposed way to generate likelihood features p is very ineffective and leads to
overfitting for matrices Zt with small number of rows. To avoid overfitting and generate
robust likelihood features several modification to the Algorithm 1 have been applied.

 Likelihood (Type 1). Calculated based on all days except one, likelihood is assigned
to the samples for the removed day only.

 Likelihood (Type 2). Calculated based on the previous day only, likelihood is
assigned to the samples from the next day only.

The column Likelihood Type 1 loss in the Appendix A shows the loss when the likelihood

161

Dmitry Efimov

features of type 1 are interpreted as predicted probabilities.

3.3 Likelihood feature engineering: algorithm 2

The likelihoods of types 1 and 2 do not take into consideration the frequencies of
categorical features levels. We have developed a robust algorithm that calculates likelihood
features using frequencies of different levels (Likelihood Type 3).

Algorithm 2 Likelihood Type 3 feature engineering
function SPLITMATRIXBYROWS(M)

split the matrix M into)(MT non-overlapping submatrices)}(,...,1{},{ MTtM t by rows
such that each tM has identical rows,)(MT is a number of unique rows in the matrix M

return list of index sets },...,{)(1 MTII , where tI contains row indices of the matrix M

corresponding to the matrix tM
require:

parameter α > 0
J = (j1, …, js) {1, …, n}

increasing sequence of jumps V = (v1, …, vl) {1, …, s}, where v1 < s

m

yy
f m

i

...1 , },...,1{ mi

for Vv do
Jv = {j1, …, jv}
Z = (xij) X, where i {1, 2, … m}, jJv

pi = 0, ci = 0, i {1, …, m}

for I = {i1, …, ir} SPLITMATRIXBYROWS(Z) do
rcc

rii ...
1

r

yy
pp r

r

ii

ii

...
... 1

1

)(cw - weight vector
},...,1{,)1(mipwfwf iiiii - update the likelihood feature vector

We have implemented the algorithm 2 with the initial sequence of features J = (place

category, place domain, place id, banner position, C16, connection type, discrete1, discrete3,
discrete2, discrete4, device model) and sequence of jumps V = (1, 2, 3, 5, 6, 8, 10, 11). The
leaderboard scores for different likelihoods are combined in the table.

Likelihood feature Type Leaderboard score

likeli1 device 1 0.4397212
likeli1 device ad 1 0.4331226

likeli21 2 0.6002409
likeli22 2 0.5910416
likeli23 2 0.5929031
likeli3 3 0.3940163

Table 1 : Likelihood features performance

162

Dmitry Efimov

4 FTRL-PROXIMAL MODEL

We transformed the design matrix X to the sparse binary design matrix such that one
column corresponds to one level of categorical feature (due to the huge number of levels we
have applied the hashing trick6 to transform values of categorical features to indices).

Follow The (Proximally) Regularized Leader (FTRL-Proximal) is the online algorithm
presented in 3,4. The prediction for sample i is constructed as)(ˆ

iii xwy , where wi is a
weight vector of size n on i-th iteration.

The algorithm updates the weights of the sample i+1 based on the previous samples
{1,…,i} by finding

constwwwgw

wwwwgw

i

r

r

i

r

rrr
w

i

r

rr

i

r

r
w

i

11
1

2

2
1

11
1

2

2
1

1

2
1)(minarg

2
1minarg

and

},...,1{,
)(

2
1

2

1
Nj

g
i

r

rji

r

rj

 ,

where λ1, λ2 are regularization parameters, α, β are parameters of the learning rate schedule, τr

= (τr1, … , τrN) is a vector of learning rates for the step r,

rNr

r
w

L

w

L
g ,...,

1

 is a gradient

vector of logarithmic loss L in the form (1) for the step r.

Algorithm 3 FTRL-Proximal algorithm
require parameters α, β, λ1, λ2
zj = 0 and nj =0, },...,1{ Nj
for i = 1 to m do

receive sample vector xi and let J = {j | xij ≠ 0}
prediction step:

for j J do

otherwise ,)(

|z| if ,0

1

1

2

1j

jj

jj
zsignz

nw

predict)(ˆ wxy ii using the wj computed above
update step:

observe label yi {0, 1}
for j J do

iij yyg ˆ - gradient direction of loss w.r.t. wj

 jjjj ngn 21

163

Dmitry Efimov

jjjjj wgzz
2
jjj gnn

Data batching is an effective technique that frequently increases the prediction accuracy.

The big diversity of mobile applications and internet web-pages inspired us to transform the
FTRL-Proximal algorithm to its batching version. The natural way to create batches from the
provided dataset is to separate it by sites and applications. Unfortunately, there are a lot of
sources with small number of clicks and sources appeared in the test dataset only. We suggest
to train a model for each small batch starting from the previous batch weights.

From the first point of view it seems that we need to perform a lot of computational work,
but the implementation of this idea is very simple. We concatenated the training and test
datasets and sorted them by the set of features. The FTRL-Proximal algorithm has been
applied to the resulting dataset. In case we receive the sample from the testing set we skip the
update step of the Algorithm 3.

Algorithm 4 FTRL-Proximal Batch algorithm
require parameters α, β, λ1, λ2
zj = 0 and nj =0, },...,1{ Nj
for i = 1 to m do

receive sample vector xi and let J = {j | xij ≠ 0}
prediction step:

for j J do

otherwise ,)(

|z| if ,0

1

1

2

1j

jj

jj
zsignz

nw

predict)(ˆ wxy ii using the wj computed above
observe label yi

if yi {0, 1} then

update step:

for j J do
iij yyg ˆ - gradient direction of loss w.r.t. wj

 jjjj ngn 21

jjjjj wgzz
2
jjj gnn

The Algorithm 4 can be essentially improved by sorting with respect to different sets of

features. The following table summarizes the leaderboard scores for different types of sorting
in the Algorithm 4.

164

Dmitry Efimov

Description Leaderboard score

dataset is sorted by app id, site id, banner pos,

count1, day, hour
0.3844277

dataset is sorted by app domain, site domain,

count1, day, hour
0.3835289

dataset is sorted by person, day, hour 0.3844345
dataset is sorted by day, hour with 1 iteration 0.3871982
dataset is sorted by day, hour with 2 iterations 0.3880423

Table 2 : FTRL-Proximal Batch models performance

The last two rows corresponds to the FTRL-Proximal algorithm without batches (the
Algorithm 3) with one and two training iterations.

5 FACTORIZATION MACHINE MODEL

The polynomial regression is one of the most popular approaches in machine learning. For
example, the second order polynomial regression includes all pairwise interactions between
features:

1

1 11
0ˆ

n

j

n

jk

kj

jk

n

j

j

j xxwxwwy .

The number of weights in this model is 0.5n(n-1) + n + 1. To adapt the polynomial
regression model for the dataset with categorical features we need to transform each
categorical feature to the set of binary features such that one binary feature corresponds to one
level of categorical features. But such adaptation increases the number of weight to 0.5N(N-1)

+ N + 1, where N is a number of levels for all categorical features. In the provided dataset N

= 256 971, so the number of weights for the 2nd order polynomial regression is
33 023 343 511.

The Factorization Machine algorithm7 is a very successful attempt to reduce number of
weights and it is based on the idea that matrix of weights has small rank, so we can apply low
rank approximation procedure to this matrix. We assume that each feature is described by H
latent factors and prediction is obtained by

1

1 1
11

1
0),...,(),...,(ˆ

n

j

n

jk

kj

kHkjHj

n

j

j

j xxvvvvxwwy ,

where (vj1,…,vjH) is a vector of latent factors corresponding to the feature j and ∙ denotes the
dot product of two vectors. Then number of weights for the model with binary features is
reduced to NH + N + 1.

In case if all features in the dataset are categorical Jahrer et al.2 proposed the different idea
to generate predictions:

)(ˆ
ii py ,

where

1

1 1
11),...,(),...,(2 n

j

n

jk

jHxjxkHxkxi ikikijij
wwww

n
p .

165

Dmitry Efimov

The number of weights is N × n × H. The bias and linear terms have been excluded from
the model. For the provided dataset n = 66, N = 256 971 and the number of latent factors we
used H = 20, then the number of weights is 339 201 720.

It is convenient to use the logarithmic loss L in the form (2) for this model (see sect.2). The
regularization term has been added to the loss function L to avoid huge weights

2

2
1

wLLreg .

The gradient direction

khxjhxpy

py

i

khx

khx

i

py

py

i

khx

reg

khx

ijikii

ii

ij

ij

ii

ii

ij

ij

ww
e

ey

n

w
w

p

e

ey

nw

L
g

1
2

1
2

and the learning rate schedule described in 1
 2khxkhxkhx ijijij
g

are utilized for the weight update

khxkhxkhxkhx ijijijij
gww

(the values for model parameters: regularization parameter λ = 0.00002, learning rate α =

0.02, number of latent factors H = 20, number of iterations T = 20).
We have implemented the preprocessing procedure to recode the levels of categorical

features to numerical values. To explain the basic idea of the algorithm we consider a simple
example for two latent factors H = 2 and design matrix

ccc

bbb

aaa

X

271.0
232.0
231.0

.

After the preprocessing step the design matrix is transformed to

741
632
531

X .

The Factorization Machine algorithm builds the prediction for three samples in the
following forms:

),(),(),(),(),(),(
3
2

5225213323315125111321313123111221211 wwwwwwwwwwwwp ,

),(),(),(),(),(),(
3
2

6226213323316126112322313123112222212 wwwwwwwwwwwwp ,

),(),(),(),(),(),(
3
2

7227214324317127111321314124111221213 wwwwwwwwwwwwp .

The pseudocode for the preprocessing procedure and Factorization Machine model is listed
in the Algorithm 5. The leaderboard score obtained by this algorithm is 0.3818004.

166

Dmitry Efimov

Algorithm 5 Factorization Machine
preprocessing step:

N = 0

for j=1 to n do
receive column xj
u = (u1,…,us) is a vector of different values of column xj
bj = 0 j {1,…,m}

for i=1 to s do
bk = i+N, k {k: xk = ui}

N = N + s

replace the column j of matrix X by bj
require:
λ, α, H, T - parameters
w ← (N × n × H) - uniform random matrix of weights
g ← (N × n × H) - unit matrix of gradients
τ ← (N × n × H) - zero matrix of learning rate schedule
for t=1 to T do

for i=1 to m do
receive sample xi
prediction step:

pi = 0

for j = 1 to n-1 do
for k = j+1 to n do

for h = 1 to H do
jhxkhxii ikij

wwpp
update step:

for j=1 to n-1 do
for k=j+1 to n do

for h=1 to H do

khxjhxpy

py

i
khx ijikii

ii

ij
ww

e

ey

n
g

1
2

jhxkhxpy

py

i
jhx ikijii

ii

ik
ww

e

ey

n
g

1
2

2
khxkhxkhx ijijij

g
2

jhxjhxjhx ikikik
g

khxkhxkhxkhx ijijijij
gww

jhxjhxjhxjhx ikikikik
gww

},...,1{),(ˆ mipy ii - prediction

6 CROSS-VALIDATION AND ENSEMBLING

All algorithms have been validated by cross-validation procedure: we train the models for
the first 9 days (from 21 to 29) and check predicted values for the 10th day (day 30). All

167

Dmitry Efimov

models and likelihood features showed high correlation between the cross-validation score
and the leaderboard score.

The final model was the geometric average of 4 models: 1 Factorization Machine and 3
FTRL-Proximal Batch models. All leaderboard scores obtained from individual models and
ensembling are summarized in the Appendix C.

7 RESULTS AND FUTURE WORK

The TOP-7 results in the Click-Through Rate Prediction challenge are deduced in the
table:

Place Team Leaderboard score Difference between

the 1st place score

1 4 Idiots 0.3791384 ---
2 Owen 0.3803652 0.32%
3 Random Walker 0.3806351 0.40%
4 Julian de Wit 0.3810307 0.50%
5 Dmitry Efimov 0.3810447 0.50%

6 Marios and Abhishek 0.3828641 0.98%
7 Jose A. Guerrero 0.3829448 1.00%

Table 3 : Final results

There are several directions can be chosen for the future work:
 apply batching idea to the Factorization Machine algorithm;
 find better sorting for the FTRL-Proximal Batch algorithm;
 find an algorithm that can find better sorting without cross-validation procedure.

APPENDIX A

Global average loss: 0.4405303

Layer Feature Number of

possible values

Likelihood Type 1

loss

% of improvement

from global average

Site id 4 737 0.4181859 5.07%
Site domain 7 745 0.4228221 4.02%
Site category 26 0.4360144 1.03%

Application id 8 552 0.4237463 3.81%
Application domain 559 0.4344352 1.38%
Application category 36 0.4332868 1.64%

Device id 2 686 408 0.4398604 0.15%
Device model 8 251 0.4334043 1.62%
Device type 5 0.4404688 0.01%

Connection ip 6 729 486 0.4352860 1.19%
Connection type 4 0.4372744 0.74%

Banner position 5 0.4393470 0.27%
Banner C1 7 0.4402977 0.05%
Banner C14 2 626 0.4254656 3.42%
Banner C15 8 0.4363940 0.94%

168

Dmitry Efimov

Banner C16 9 0.4350504 1.24%
Banner C17 435 0.4260337 3.29%
Banner C18 4 0.4263280 3.22%
Banner C19 68 0.4341547 1.45%
Banner C20 172 0.4335514 1.58%
Banner C21 60 0.4280274 2.84%
Time day 11
Time hour 24

Table 4 : Basic features description

APPENDIX B

Name Comments Type

place id site id, app id Other
place domain site domain, app domain Other
place category site category, app category Other

ad position

appin ad ,0
siteon ad ,1

Other

person device id, device ip, device type,
device model

Block

ad C14, C15, C16, C17, C18,
C19, C20, C21

Block

count1 device id Count
count2 device ip Count
count3 person Count
count4 person, site id Count
unique1 device id; site id Count unique
unique2 device ip; site id Count unique
unique3 place id; ad Count unique
unique4 person; ad Count unique
unique5 device id; device ip Count unique
unique6 person; day Count unique
unique7 person, hour; site id Count unique
unique8 person, hour; app id Count unique
discrete1 count1 Discretized
discrete2 count2 Discretized
discrete3 unique1 Discretized
discrete4 unique2 Discretized
discrete5 count3 Discretized
block1 device id, site id Block
block2 device id, place id Block
block3 device model, C16 Block
block4 banner position, connection type Block
block5 place id, banner position Block
block6 place id, banner position, connection

type, device model
Block

block7 discrete1, discrete2,discrete3, discrete4 Block

169

Dmitry Efimov

block9 place category, place domain, place id,
banner position, C16, connection type,

discrete1, discrete3, discrete2,
discrete4, device model

Block

block11 person, site id Block
block12 site domain, site id Block
block13 C14, C15, C16, C17, C18, C19, C20,

C21, device id, device ip, device type,
device model

Block

likeli1 device device id, device type, device model Likelihood1
likeli1 place place id Likelihood1
likeli1 site site id Likelihood1
likeli1 app app id Likelihood1

likeli1 device id device id Likelihood1
likeli1 device ad device id, device type, device model,

banner pos, C15, C16
Likelihood1

likeli21 person, place id Likelihood2
likeli22 person, place category Likelihood2
likeli23 person, place domain Likelihood2
likeli3 see the Algorithm 2 Likelihood3

click age

otherwise ,2
25day ,1

Other

place device click ratio

otherwise ,0
device likeli1 place likeli1 ,1
device likeli1 place likeli1 ,1

Other

person hour site rate
unique8unique7

unique7

Other

person site rate percentage of visited sites with respect
to all activities for each person

Other

Table 5 : Engineered features description

APPENDIX C

Model name Description Leaderboard score

ftrlb1 Algorithm 4: dataset is sorted by app id,
site id, banner pos, count1, day, hour

0.3844277

ftrlb2 Algorithm 4: dataset is sorted by app domain,
site domain, count1, day, hour

0.3835289

ftrlb3 Algorithm 4: dataset is sorted by person,
day, hour

0.3844345

fm Algorithm 5 0.3818004
ens fm0.6 ∙ ftrlb10.1 ∙ ftrlb20.2 ∙ ftrlb30.1 0.3810447

Table 6 : Individual models and ensembling performance

170

Dmitry Efimov

REFERENCES

[1] W.-S. Chin, Y. Zhuang, Y.-C. Juan and C.-J. Lin, A learning-rate schedule for stochastic

gradient methods to matrix factorization, PAKDD, (2015).
[2] M. Jarher, A. Toscher, J.-Y. Lee, J. (B.) Deng, H. Zhang and J. Spoelstra, Ensemble of

collaborative filtering and feature engineered models for click through rate prediction, KDD
Cup, (2012).

[3] H. B. McMahan, Follow-the-regularized-leader and mirror descent: Equivalence theorems and

l1 regularization, 14th International Conference on Artificial Intelligence and Statistics
(AISTATS), Vol. 15, (2011).

[4] H. B. McMahan, G. Hold, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips,
E.Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A. M. Hrafnkelsson, T. Boulos
and Jeremy Kubica. Ad click prediction: a view from the trenches, KDD, Chicago, Illinois, USA,
(2013).

[5] P. E. Meyer, Information-theoretic variable selection and network inference from microarray

data, PhD thesis, Universite Libre de Bruxelles, Belgium, (2008).
[6] A. Rajaraman and J. D. Ullman, Mining of massive datasets, Cambridge University Press, (2011).
[7] S. Rendle, Factorization machines with libfm, ACM Transactions on Intelligent Systems and

Technology, 3(3), (2012).
[8] S. Rendle, Social network and click-through prediction with factorization machines, KDD Cup,

(2012).
[9] Y.Yang and G.I.Webb, On why discretization works for Naive-Bayes classifiers, 16th Australian

Joint Conference on Artificial Intelligence, number 107, pages 45–46, (2003).

171

December 03, 2014

