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Summary. This paper describes a numerical method for modeling of compressible viscous 
time-dependent 2D flows. Considered numerical method is based on hybrid implicit finite-
difference scheme (WW scheme). The scheme can be referred to class of two-parametrical 
finite-difference schemes. Having second order accuracy for time and space and 
unconditional stability the scheme has also internal artificial viscosity regulated by the choice 
of weight parameters.  The feature of controlled artificial viscosity allows one to avoid 
undesirable oscillations in solution. Being simple and effective the method is applied to some 
practical CFD problems such as: jets interaction, separation problems, optimizing analysis. 

  

 
 
1 INTRODUCTION 

Numerical modeling of viscous compressible flows based on solving the Navier-Stokes 
equations. There are many well-known numerical methods intended for 2D viscous 
compressible flows such as Maccormack method ¹, Beam-Warming method 2,3 and many 
others. The methods for viscous compressible flows are thoroughly described in survey 4. 

These papers form some general requirements for numerical methods in practice.  To 
compute viscous compressible time-dependent flows one should apply numerical methods 
with following properties: 

- At least second order accuracy in space and time, 
- Unconditional stability, 
- The absence of limitations for time-step, 
- Convenience for programming and computing. 
 
To obtain the most exact results of mathematical modelling for different physical processes 

the researcher should use the best qualities of different finite-difference schemes combined by 
different ways. 

For instance, if solution is smooth enough in some parts of computational field, it is natural 
to apply high-order accuracy finite-difference schemes. To prevent the appearance of 
nonphysical oscillations in the vicinity of solution discontinuities one should apply schemes 
with artificial viscosity or monotone schemes having first order accuracy. Hybrid finite-
difference schemes are applied with purpose to combine the most useful properties of 
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different numerical schemes in one computational field. 
For the simplest case hybrid scheme can be written as combination   

21 *)1(* GSGS −+  (1)

where S  – hybrid coefficient ( or weight parameter), 1G  and 2G  – numerical schemes, having 
different useful properties. For example, 1G  – first-order accuracy scheme, 2G - high-order 
accuracy scheme. 

Most of applying to practical CFD problems finite-difference schemes is hybrid. 
According to review 5, such well-known algorithms  as  FCT (flux corrected transport), 
different types of TVD (total variation diminishing) schemes, ENO (essentially non-
oscillatory) and WENO (weighted essentially non-oscillatory) schemes and many other 
popular schemes can be referred to the class of hybrid finite-difference schemes. Detailed 
description and classification for different types of hybrid finite-difference schemes is 
considered in review 5. 

So, hybrid schemes are very useful because the researcher can choose the best from the 
properties of different schemes. At the same time some difficulties appear. The researcher 
needs detail analysis of properties and possible limitations for hybrid coefficients (or weight 
parameters) to keep the correspondence between physical process and numerical model. 

The present paper describes numerical method, which agrees with mentioned above 
general requirements. It’s ADI-method modification using hybrid implicit finite difference 
scheme. The scheme has second order accuracy in space and time. Also the scheme (we’ll call 
this scheme as WW-scheme) is unconditionally stable and simple for programming. Except 
these properties WW-scheme has one interesting and useful feature. When non-linear problem 
with strong shocks is solved, one has to reduce undesirable solution oscillations. There are 
two ways for this. The first way is concerned with procedure of smoothing between time-
steps. The second way consists in adding some terms with artificial viscosity to basic 
equations. Both ways require more calculations and complicate algorhytm. The present 
numerical method doesn’t need these ways. Needed for stabilization of solution artificial 
viscosity is an internal property of WW-scheme. One can regulate the artificial viscosity by 
the choice of weight parameters. This property is quite suitable for practical applications. 

2 APPLICATION TO BURGERS EQUATION 

Before discussing the solution of the complete Navier-Stokes equations, it’s worthwhile to 
consider the basic elements of WW-scheme applied to Burgers equation. 
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This equation is considered as one-dimensional analogy of the Navier-Stokes equations. 
We’ll consider the simplest case with constant viscosity ν  and convection velocity c .     

  Denote finite difference operators for approximation of space derivatives: 
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With the help of finite difference operators (3) one can write the class of schemes with 
properties depending of the choice two parameters 1S  and 2S . We’ll call these parameters as 
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«weights». These schemes can be written in a form 

[ ]+−+
Δ
Δ

−+−+= +
−+

+ n
i

n
i

n
i

n
i

n
i

n
i fSfS

x
tcffSfSf 12

1
121111

1 )1(
2

))(1(
2
1 δδ  

(4)

[ ]n
i

n
i fSfS

x
t

22
1

222 )1(
)(

δδν
−+

Δ
Δ

+ +  
 

It is easy to note that for  5.02 =S  finite-difference scheme (4) is a linear combination of 
Crank-Nicolson scheme type, having second order accuracy for time and space variables, and 
Lax scheme, having significant artificial viscosity.  

Choosing 
τ

11 Ssk
−

=  the additional term containing artificial viscosity can be presented as 
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Thus, WW-scheme can be considered as hybrid implicit unconditionally stable finite-
difference scheme having second order accuracy for time and space variables. This scheme 
includes terms with artificial viscosity preventing non-physical oscillations near the shocks. 
The artificial viscosity is regulated by the choice of weight parameters. The important 
advantage of WW-scheme is the fact that one can directly control the artificial viscosity by 
regulating the meaning of weight parameter  ks . This hybrid scheme can be quite effective 
being applied to computations of 2D viscous flows. 

3 APPLICATION TO NAVIER-STOKES EQUATIONS 
The unsteady compressible 2D form of Navier-Stokes equations is used for modeling 

viscous flows. These equations can be written in non-dimensional form as 
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in terms of density ρ ,  velocity components u  and v  for directions x  and y , viscosity 
coefficient μ , temperature T , heat conductivity λ , Mach number ∞M , Reynolds number 

∞Re , Prandtl number Pr , specific heat ratio γ . Index j  defines the type of problem under 
consideration. If 0=j , one considers flat 2D problem. For 1=j  we consider axis-symmetric 
problem in cylindrical coordinates. 

 The pressure P  can be obtained by non-dimensional equation of state 
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We assume that viscosity coefficient μ  and  heat conductivity coefficient  λ  are 
connected as 

( )Tμμλ ==      (10)

The system of equations (6) is solved in assumption that each sought-for gasdynamic 
function Tvu ,,,ρ can be defined from corresponding equation of system (6). Each equation of 
system (6) can be presented as 
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where gedcba ,,,,,  are corresponding coefficients. Part H contains the terms with mixed 
derivatives and the terms with functions (and derivatives) corresponding to other defining 
equations from (6). 

The modified ADI-method is used for numerical solving the equations (6). For instance 
one can write equation (6) for x  coordinate direction in a form 
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Such equation can be solved by means of WW scheme (4) with corresponding choice of 
weight parameters (5). Using ADI-method one should apply the scheme to each coordinate 
direction by turns. The linearization of the non-linear coefficients is obtained by the procedure 
of linear extrapolation for time-steps. Using WW-scheme the solution of equation (12) 
amounts to solving corresponding tridiagonal matrix equation. This procedure should be 
implemented for each direction by turns. 

4 NUMERICAL RESULTS 
Being quite simple and suitable for programming described above method was applied to 

many standard CFD problems for viscous compressible flows such as flows near obstacles, 
wake  flows, boundary layers near the surface, jet interaction with obstacle etc. The method 
can be considered as quite effective for such 2D problems. It allows to define shock waves 
and vortex zones in the flows having good agreement with corresponding experimental 
results. 

These properties allow using of numerical method for some more complicated problems. 
Also the method is used as a basic method for some program systems. The examples are 
described below. 

 Described numerical method is used for testing of program tool intended for hybrid finite-
difference schemes optimization 6. The paper 6 contains the description of developed program 
tool Burgers2.  This program tool is intended for tuning and optimization of computational 
properties for hybrid finite-difference schemes applied to Burgers equation. One-dimensional 
model Burgers equation describes propagation of disturbances for dissipative medium. The 
equation has exact solution, so it is widely used for tuning-up of computational tools. 
Described program tool is based on combining of optimization problem solution and visual 
data presentation. Visual presentations of maximal error surface and error function are 
implemented as program tool features. User is able to visualize error function distribution for 
any chosen moment of time. These visual presentations allow analyzing and control 
computational properties of hybrid finite-difference schemes under consideration. Users have 
possibility of creating hybrid finite-difference schemes and analyzing computational 
properties for chosen grid template provided by program tool. Visual presentation of 
optimization problem solution allows finding of suitable weight coefficients for hybrid finite-
difference scheme under consideration. WW scheme was used as test for program. The 
optimization solution allows to find minimal value for artificial viscosity (5) preventing 
oscillations. The choice of minimal value ks   allows decreasing of error up to 0,5% (Fig.1) in 
comparison with exact solution6 .  

Another example of numerical method usage is described in paper 7. This paper presents a 
program set for numerical simulation and visual presentation of viscous heat-conductive flows 
in channels. Described above method is used as a basic method for this program set. Some 
results are shown in Fig.2 (velocity field for stationary flow) and in Fig.3 (pressure field for 
unsteady flow). The program set allows user simulating and visualizing flowfield in channels 
for different types of boundary conditions and initial conditions. Also the program set allows 
to solve different types of inverse problems for channels 8. 

Another one example of numerical method application is devoted to practical analysis of 
unsteady circulating zones transformation.  The results are presented in paper 9. The problem 
of unsteady interaction of the supersonic viscous flow with jet obstacle is considered. 
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Figure 1: Error function ),( txK  for Burgers equation ( 5.02 =S ) 6. 

This obstacle appears due to co-current underexpanded jet exhausting from the nozzle. The 
nozzle is placed to external supersonic viscous flow. Expanding jet propagates on the external 
surface of the nozzle and creates obstacle in external flowfield. The obstacle disturbs external 
flow and circulating zone appears ahead the obstacle. Typical flow structure is shown in Fig.4 
by streamlines.  

Figure 2: Velocity field for stationary flow 7. 

Figure 3: Pressure field for unsteady flow 7. 

We consider a problem containing time-dependent boundary condition for underexpanded 
jet. Jet pressure ratio was set at the nozzle edge as time-dependent function ∞== PPtnn a /)(  
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(where aP - jet pressure, ∞P  - external flow pressure). The full system of time-dependent 
Navier-Stokes equations for viscous compressible heat-conductive flow is used as 
mathematical model. The dependence )(tnn =  is chosen as linear function. It allows one to 
set different rates of pressure ratio growth up to 100=n . 

 
Figure 4: Flow structure for slow pressure ratio growth 9. 

As a result of calculations of direct problem a new space-time structure is formed.  
Increasing the rate of pressure ratio growth one obtains new space-time structure in the 
vicinity of circulating zone ahead the jet obstacle. This new structure is shown by streamlines 
in Fig.5.  

 

Figure 5: Flow structure for fast pressure ratio growth 9. 

This problem is considered also from the point of view of parametric optimizing analysis in 
paper10. The formation of new space-time structure in the flow is considered as unsteady event in 
question. The rate of pressure ratio growth is chosen as control parameter. The case of four 
determining parameters is considered. These four parameters are Mach number - ∞M , Reynolds 
number  - ∞Re , Prandtl number - ∞Pr  and ∞Sh  - Strouhal number for the problem under 
consideration. For each fixed set of these numbers ),Pr,Re,( ∞∞∞∞ ShM  the inverse problem is 
solved by varying pressure ratio growth rate until the onset of the new structure formation in the flow. 
Characteristic parameters vary in definite ranges 10. 

 So for each set of characteristic ),Pr,Re,( ∞∞∞∞ ShM  one defines the exact values for crucial 
velocity of pressure ratio growth *V  when the new flow structure appears. Parallel algorithm is 
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implemented for computations. For the space of determining parameters two types of grids are chosen: 
5 and 10 points for each determining parameter. It requires computing 625 and 10000 inverse 
problems. The computations are performed by parallel cluster K100 (Keldysh Institute of Applied 
Mathematics RAS, Moscow, Russia). MPI technology is applied to control parallel computations. 

As a result of approach application four-dimensional data array is obtained. This array contains 
numerical presentations of crucial velocity *V  dependence on four determining parameters 

),Pr,Re,( ∞∞∞∞ ShM . 
The analysis of variances for each characteristic parameter and construction of different 3D data 

projections for various triplets of determining parameters allow to decrease the number of dimensions 
up to three. 

 So we are able to consider 3D array  ),Pr,(**
∞∞∞= ShMVV . The dependence is shown in Fig.6 

by isosurfaces. 
Analyzing visual presentation one can approximate the isosurfaces by planes. For the purpose of 

rough estimation the sought–for dependence can be written in a form of plane. It allows one to get 
average estimation of  *V  and  dependence on determining parameters as  

∞∞∞∞∞∞ ++−== ShMShMVV 24.0Pr115.01.0),Pr,(**  (13)

 

Figure 6: Crucial velocity dependence on Mach, Prandtl and Strouhal numbers10. 

This example illustrates that described above numerical method can be used for inverse 
problems and optimization problems of 2D viscous flows. 

5 CONCLUSIONS 

The paper describes a numerical method for simulating of 2D viscous compressible flows. 
The method is based on a hybrid finite difference scheme having artificial viscosity regulating 
by the choice of scheme weight parameters. Being quite simple and suitable for programming 
the method is implemented in many applications for modeling of 2D viscous compressible 
flows.  
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